首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
水路运输   3篇
  2014年   1篇
  2010年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
The chaos that appears in the ship roll equation in beam seas known as the escape equation has been intensively investigated because it is closely related to capsizing incidents. In particular, many applications of the Melnikov integral formula have been reported in the literature; however, in all the analytical works concerning the escape equation, the Melnikov integral is formulated utilizing a separatrix for the Hamiltonian part or a numerically obtained heteroclinic orbit for the non-Hamiltonian part of the original escape equation. To overcome such limitations, this article attempts to utilise an analytical expression for the non-Hamiltonian part. As a result, an analytical procedure is provided that makes use of a heteroclinic orbit of the non-Hamiltonian part within the framework of the Melnikov integral formula.  相似文献   
2.
Making use of Melnikov’s method, a generalized formula for predicting the surf-riding threshold is developed as an extension to the applications of Kan and Spyrou. A new analytical formula for calculating the surf-riding threshold of a ship in following seas is also proposed in light of nonlinear dynamical system theory. By applying a continuous piecewise linear approximation to the wave-induced surge force, a heteroclinic bifurcation point is obtained analytically with an uncoupled surge equation. Results calculated using these formulae are presented, and they show good agreement with those obtained utilizing numerical bifurcation analysis. Further, it was confirmed that the surf-riding threshold obtained using the proposed formulae agrees reasonably well with that obtained experimentally for an unconventional vessel.  相似文献   
3.
In the research field of nonlinear dynamical system theory, it is well known that a homoclinic/heteroclinic point leads to unpredictable motions, such as chaos. Melnikov’s method enables us to judge whether the system has a homoclinic/heteroclinic orbit. Therefore, in order to assess a vessel's safety with respect to capsizing, Melnikov’s method has been applied for investigations of the chaos that appears in beam sea rolling. This is because chaos is closely related to capsizing incidents. In a previous paper (Maki et al. in J Mar Sci Technol 15:102–106, 2010), a formula to predict the capsizing boundary by applying Melnikov’s method to analytically obtain the non-Hamiltonian heteroclinic orbit was proposed. However, in that paper, only limited numerical investigation was carried out. Therefore, further comparative research between the analytical and numerical results is conducted, with the result being that the formula is validated.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号