首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
公路运输   2篇
综合运输   15篇
  2021年   1篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   6篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
排序方式: 共有17条查询结果,搜索用时 140 毫秒
1.
In this paper, we propose a new schedule-based equilibrium transit assignment model that differentiates the discomfort level experienced by sitting and standing passengers. The notion of seat allocation has not been considered explicitly and analytically in previous schedule-based frameworks. The model assumes that passengers use strategies when traveling from their origin to their destination. When loading a vehicle, standing on-board passengers continuing to the next station have priority to get available seats and waiting passengers are loaded on a First-Come-First-Serve (FCFS) principle. The stimulus of a standing passenger to sit increases with his/her remaining journey length and time already spent on-board. When a vehicle is full, passengers unable to board must wait for the next vehicle to arrive. The equilibrium conditions can be stated as a variational inequality involving a vector-valued function of expected strategy costs. To find a solution, we adopt the method of successive averages (MSA) that generates strategies during each iteration by solving a dynamic program. Numerical results are also reported to show the effects of our model on the travel strategies and departure time choices of passengers.  相似文献   
2.
To assess the vulnerability of congested road networks, the commonly used full network scan approach is to evaluate all possible scenarios of link closure using a form of traffic assignment. This approach can be computationally burdensome and may not be viable for identifying the most critical links in large-scale networks. In this study, an “impact area” vulnerability analysis approach is proposed to evaluate the consequences of a link closure within its impact area instead of the whole network. The proposed approach can significantly reduce the search space for determining the most critical links in large-scale networks. In addition, a new vulnerability index is introduced to examine properly the consequences of a link closure. The effects of demand uncertainty and heterogeneous travellers’ risk-taking behaviour are explicitly considered. Numerical results for two different road networks show that in practice the proposed approach is more efficient than traditional full scan approach for identifying the same set of critical links. Numerical results also demonstrate that both stochastic demand and travellers’ risk-taking behaviour have significant impacts on network vulnerability analysis, especially under high network congestion and large demand variations. Ignoring their impacts can underestimate the consequences of link closures and misidentify the most critical links.  相似文献   
3.
Emerging technologies toward a connected vehicle-infrastructure-pedestrian environment and big data have made it easier and cheaper to collect, store, analyze, use, and disseminate multi-source data. The connected environment also introduces new approaches to flexible control and management of transportation systems in real time to improve overall system performance. Given the benefits of a connected environment, it is crucial that we understand how the current intelligent transportation system could be adapted to the connected environment.  相似文献   
4.
This paper looks at the first and second best jointly optimal toll and road capacity investment problems from both policy and technical oriented perspectives. On the technical side, the paper investigates the applicability of the constraint cutting algorithm for solving the second best problem under elastic demand which is formulated as a bilevel programming problem. The approach is shown to perform well despite several problems encountered by our previous work in Shepherd and Sumalee (Netw. Spat. Econ., 4(2): 161–179, 2004). The paper then applies the algorithm to a small sized network to investigate the policy implications of the first and second best cases. This policy analysis demonstrates that the joint first best structure is to invest in the most direct routes while reducing capacities elsewhere. Whilst unrealistic this acts as a useful benchmark. The results also show that certain second best policies can achieve a high proportion of the first best benefits while in general generating a revenue surplus. We also show that unless costs of capacity are known to be low then second best tolls will be affected and so should be analysed in conjunction with investments in the network.
Agachai SumaleeEmail:

Andrew Koh   Prior to joining the Institute for Transport Studies in December 2005, Andrew was employed for number of years as a consultant in highway assignment modelling. He is an economist with wide ranging research interests in transport economics as well as evolutionary computation heuristics such as genetic algorithms, particle swarm optimisation and differential evolution. Simon Shepherd   At the Institute for Transport Studies since 1989, he gained his doctorate in 1994 applying state-space methods to the problem of traffic responsive signal control in over-saturated conditions. His expertise lies in modelling and policy optimisation ranging from detailed simulation models through assignment to strategic land use transport models. Recently he has focussed on optimisation of road user charging schemes and is currently working on optimal cordon design and system dynamics approaches to strategic modelling. Agachai Sumalee   Agachai is currently an Assistant Professor at Department of Civil and Structural Engineering, Hong Kong Polytechnic University (). He obtained a Ph.D degree with the thesis entitled “Optimal Road Pricing Scheme Design” at Leeds University in 2004. His research areas cover transport network modeling and optimization, stochastic network modeling, network reliability analysis, and road pricing. Agachai is currently an associate editor of Networks and Spatial Economics.  相似文献   
5.
This paper proposes a stochastic dynamic transit assignment model with an explicit seat allocation process. The model is applicable to a general transit network. A seat allocation model is proposed to estimate the probability of a passenger waiting at a station or on-board to get a seat. The explicit seating model allows a better differentiation of in-vehicle discomfort experienced by sitting and standing passengers. The paper proposes simulation procedures for calculating the sitting probability of each type of passengers. A heuristic solution algorithm for finding an equilibrium solution of the proposed model is developed and tested. The numerical tests show significant influences of the seat allocation model on equilibrium departure time and route choices of passengers. The proposed model is also applied to evaluate the effects of an advanced public transport information system (APTIS) on travellers’ decision-making.  相似文献   
6.
Evaluating the reliability of a transportation network often involves an intensive simulation exercise to randomly generate and evaluate different possible network states. This paper proposes an algorithm to approximate the network reliability which minimizes the use of such simulation procedure. The algorithm will dissect and classify the network states into reliable, unreliable, and un‐determined partitions. By postulating the monotone property of the reliability function, each reliable and/or unreliable state can be used to determine a number of other reliable and/or unreliable states without evaluating all of them with an equilibrium assignment procedure. The paper also proposes the cause‐based failure framework for representing dependent link degradation probabilities. The algorithm and framework proposed are tested with a medium size test network to illustrate the performance of the algorithm.  相似文献   
7.
Various models of traffic assignment under stochastic environment have been proposed recently, mainly by assuming different travelers’ behavior against uncertainties. This paper focuses on the expected residual minimization (ERM) model to provide a robust traffic assignment with an emphasis on the planner’s perspective. The model is further extended to obtain a stochastic prediction of the traffic volumes by the technique of path choice approach. We show theoretically the existence and the robustness of the ERM solution. In addition, we employ an improved solution algorithm for solving the ERM model. Numerical experiments are carried out to illustrate the characteristics of the proposed model, by comparing with other existing models.  相似文献   
8.
9.
This paper proposes a new activity-based transit assignment model for investigating the scheduling (or timetabling) problem of transit services in multi-modal transit networks. The proposed model can be used to generate the short-term and long-term timetables of multimodal transit lines for transit operations and service planning purposes. The interaction between transit timetables and passenger activity-travel scheduling behaviors is captured by the proposed model, as the activity and travel choices of transit passengers are considered explicitly in terms of departure time choice, activity/trip chain choices, activity duration choice, transit line and mode choices. A heuristic solution algorithm which combines the Hooke–Jeeves method and an iterative supply–demand equilibrium approach is developed to solve the proposed model. Two numerical examples are presented to illustrate the differences between the activity-based approach and the traditional trip-based method, together with comparison on the effects of optimal timetables with even and uneven headways. It is shown that the passenger travel scheduling pattern derived from the activity-based approach is significantly different from that obtained by the trip-based method, and that a demand-sensitive (with uneven headway) timetable is more efficient than an even-headway timetable.  相似文献   
10.
The paper proposes a first-order macroscopic stochastic dynamic traffic model, namely the stochastic cell transmission model (SCTM), to model traffic flow density on freeway segments with stochastic demand and supply. The SCTM consists of five operational modes corresponding to different congestion levels of the freeway segment. Each mode is formulated as a discrete time bilinear stochastic system. A set of probabilistic conditions is proposed to characterize the probability of occurrence of each mode. The overall effect of the five modes is estimated by the joint traffic density which is derived from the theory of finite mixture distribution. The SCTM captures not only the mean and standard deviation (SD) of density of the traffic flow, but also the propagation of SD over time and space. The SCTM is tested with a hypothetical freeway corridor simulation and an empirical study. The simulation results are compared against the means and SDs of traffic densities obtained from the Monte Carlo Simulation (MCS) of the modified cell transmission model (MCTM). An approximately two-miles freeway segment of Interstate 210 West (I-210W) in Los Ageles, Southern California, is chosen for the empirical study. Traffic data is obtained from the Performance Measurement System (PeMS). The stochastic parameters of the SCTM are calibrated against the flow-density empirical data of I-210W. Both the SCTM and the MCS of the MCTM are tested. A discussion of the computational efficiency and the accuracy issues of the two methods is provided based on the empirical results. Both the numerical simulation results and the empirical results confirm that the SCTM is capable of accurately estimating the means and SDs of the freeway densities as compared to the MCS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号