首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   5篇
公路运输   2篇
综合运输   12篇
  2020年   1篇
  2019年   2篇
  2016年   4篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
  2007年   2篇
  2003年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
This study develops a car‐following model in which heavy vehicle behaviour is predicted separately from passenger car. Heavy vehicles have different characteristics and manoeuvrability compared with passenger cars. These differences could create problems in freeway operations and safety under congested traffic conditions (level of service E and F) particularly when there is high proportion of heavy vehicles. With increasing numbers of heavy vehicles in the traffic stream, model estimates of the traffic flow could be degrades because existing car‐following models do not differentiate between these vehicles and passenger cars. This study highlighted some of the differences in car‐following behaviour of heavy vehicle and passenger drivers and developed a model considering heavy vehicles. In this model, the local linear model tree approach was used to incorporate human perceptual imperfections into a car‐following model. Three different real world data sets from a stretch of freeway in USA were used in this study. Two of them were used for the training and testing of the model, and one of them was used for evaluation purpose. The performance of the model was compared with a number of existing car‐following models. The results showed that the model, which considers the heavy vehicle type, could predict car‐following behaviour of drivers better than the existing models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
2.
Congestion in transport stations could result in stampede development and deadly crush situations. Closed circuit television (CCTV) cameras enable station managers to monitor the crowd and reduce overcrowding risks. However, identifying congestion conditions is a very laborious task for a human operator who has to monitor multiple locations at the same time. This paper presents a new approach to automated image-based identification of congestion as measured by level of service (LOS), which is the most widely accepted standard for measuring congestion. Existing methods for measuring LOS based on crowd density estimation from images have the disadvantages that, crowd density cannot be estimated accurately. In addition, the calculation of flow parameters involves a complex process, and consequently these parameters are not indicative of congestion in real-time. This paper proposes a novel method based on machine learning to directly classify LOS without calculating flow parameters. In the proposed method, visual features extracted by a deep convolutional neural network are classified using a support vector machine classifier and the classification results are further refined by using a long short-term memory network. A second contribution of this research is to develop a web-based LOS map visualization platform to monitor pedestrian distribution and variation of distribution in real-time. Experimental evaluation at Flinders Street Station in Melbourne shows that this method can achieve an accuracy of 81.9% and efficiency of 0.40?seconds per frame in LOS classification using CCTV images.  相似文献   
3.
This paper investigates the combination effects of queue jump lanes (QJLs) on signalised arterials to establish if a multiplier effect exists, that is, the benefit from providing QJLs at multiple intersections is higher than the sum of benefits from providing them individually at each of those intersections. To explore the combination effects on bus delay and total person delay, a delay estimation model is developed using kinematic wave theory, kinematic equations and Monte Carlo simulation. In addition, to investigate the combination effects in offset settings optimised for bus delay or total person delay, offset optimisation models are proposed. Validation results using traffic micro‐simulation indicate the effectiveness and computational efficiency of the proposed models. Results of a modelling test bed suggest that providing QJLs at multiple intersections can create a multiplier effect on one‐directional bus delay savings with signal offsets that provide bus progression. Furthermore, optimising offsets to minimise bus delay tends to create a multiplier effect on one‐directional bus delay savings, particularly when variations in dwell times are not high. The reason for the multiplier effect may be that providing QJLs reduces variations in bus travel times, which makes signal coordination for buses perform more effectively. From a policy perspective, the existence of a multiplier effect suggests that a corridor‐wide scale implementation of QJLs has considerable merit. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
4.
This paper investigates pedestrian crowd tactical‐level decision making during emergency evacuations. Of particular interest is crowd exit‐choice behaviour. Two sources of stated choice data are collected and combined. One data set is derived from an experiment linked to a real‐life exit choice experience of participants (in a non‐evacuation setting). We examine aspects that have often been taken for granted in the literature in connection with egress behaviour of crowds during emergencies. We quantify evacuees' trade‐off between “distance”, “density”, “exit visibility” and “directional density” as well as the interactive effect between exit visibility and tendency to follow others. A comprehensive random‐utility analysis is conducted ranging from traditionally practiced models to the state‐of‐the‐practice methods such as random‐coefficient nested logit. Our findings suggest that (i) unless evacuees face certain levels of uncertainty in the escape environment; flows of crowd are unlikely to be followed. Otherwise, most evacuees perceive other individuals as potential sources of congestion and extra delay (generalisation to situations where crowd is completely unfamiliar with the egress geometry, however, may require careful scrutiny). (ii) Evacuees mostly prefer visible exits over the exits whose congestion level is unknown to them (i.e. the tendency to minimise ambiguity). (iii) The presence of attribute uncertainty (e.g. exit visibility) significantly changes the impact of observing decisions of others on each individual choice maker. We also found out that (iv) spatial distribution of exits has a significant influence on evacuees' decisions (presenting itself in the form of violating the IIA assumption). (v) The marginal weights that different individuals place upon attributes of exits are significantly heterogeneous. (vi) There is meaningful correlation between certain utility weights of individual evacuees. These behavioural findings can provide significant behavioural insight essential for safe evacuation planning and accurate forecast of evacuees' behaviour. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
5.
Finding the optimal location for sensors is a key problem in flow estimation. There are several location models that have been developed recently for vehicle identification (ID) sensors. However, these location models cannot be applied to large networks because there are many constraints and integer variables. Based on a property of the location problem for vehicle ID sensors, given the initial vehicle ID sensors that are pre-installed and fixed on the network, this article presents a solution that greatly reduces the size of this location problem. An applied example demonstrates that when 8% of the arcs from a real network that are randomly selected have a vehicle ID sensor, the reductions are as large as 97% for the number of remaining constraints in the location model and 84% for the adjusted diameter of the feasible region of target flow. Using these two indices as target functions, two greedy algorithms are presented for solving the vehicle ID sensor location problem. These two algorithms were applied to an example in Mashhad city with 2,526 arcs, 7,157 origin-destination pairs and 121,627 paths. Using these algorithms, installing vehicle ID sensors on 8% of the network arcs results in satisfaction of 99.82% of the constraints in the location model and 97.6% reduction in the adjusted maximum possible error index. This means that deploying a low number of vehicle ID sensors on a real large network, with these greedy algorithms, yields a high level of observability.  相似文献   
6.
Transportation - In this paper, an optimisation model for recovery planning of road networks is presented in which both social and economic resilience is aimed to be achieved. The model is...  相似文献   
7.
This work focuses on developing a variety of strategies for alleviating congestion at freeway merging points as well as improving the safety of these points. On the Tokyo Metropolitan Expressway, traffic congestion frequently occurs at merging bottleneck sections, especially during heavy traffic demand. The Tokyo Metropolitan Expressway public corporation, generally applies different empirical strategies to increase the flow rate and decrease the accident rate at the merging sections. However, these strategies do not rely either on any behavioral characteristic of the merging traffic or on the geometric design of the merging segments. There have been only a few research publications concerned with traffic behavior and characteristics in these situations. Therefore, a three‐year extensive study has been undertaken to investigate traffic behavior and characteristics during the merging process under congested situations in order to design safer and less congested merging points as well as to apply more efficient control at these bottleneck sections. Two groups of strategies were investigated in this study. The First group was related to the traffic characteristics, and the second group to the geometric characteristics. In the first group, the control strategies related to closure of freeway and ramp lanes as well as lane‐changing maneuver restriction were investigated through a simulation program, detector data, and field experiment. In the second group, the angle of convergence of the ramp with the freeway in relation to merging capacity was analyzed using a simulation program. Results suggested the potential benefits of using proposed strategies developed in this work and can serve as initial guidance for the reduction of delay and improvement of safety under congested traffic conditions.  相似文献   
8.
Abstract

Car-following (CF) models are fundamental in the replication of traffic flow and thus they have received considerable attention. This attention needs to be reflected upon at particular points in time. CF models are in a continuous state of improvement due to their significant role in traffic micro-simulations, intelligent transportation systems and safety engineering models. This paper presents a review of existing CF models. It classifies them into classic and artificial intelligence models. It discusses the capability of the models and potential limitations that need to be considered in their improvement. This paper also reviews the studies investigating the impacts of heavy vehicles in traffic stream and on CF behaviour. The findings of the study provide promising directions for future research and suggest revisiting the existing models to accommodate different behaviours of drivers in heterogeneous traffic, in particular, heavy vehicles in traffic.  相似文献   
9.
This work investigates the effect of heavy commercial vehicles on the capacity and overall performance of congested freeway sections. Furthermore, the following behaviors of heavy commercial vehicles and its comparison with passenger cars are presented. Freeways are designed to facilitate the flow of traffic including passenger cars and trucks. The impact of these different vehicle types is not uniform, creating problems in freeway operations and safety particularly under heavy demand with a high proportion of heavy vehicles. There have been very few studies concerned with the traffic behavior and characteristics of heavy vehicles in these situations. This study draws on extensive data collected over a long stretch of freeway using videotaping and surveys at several sites. The collected data were firstly used to study the interaction between heavy vehicles and passenger cars. Through a detailed trajectory analysis, the following behaviors of 120 heavy vehicles were then analyzed to provide a thorough understanding of heavy vehicles‐following behavior mechanism. The results showed a significant difference in the following behavior of heavy vehicles compared with other vehicles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
10.
Collective movement is important during emergencies such as natural disasters or terrorist attacks, when rapid egress is essential for escape. The development of quantitative theories and models to explain and predict the collective dynamics of pedestrians has been hindered by the lack of complementary data under emergency conditions. Collective patterns are not restricted to humans, but have been observed in other non-human biological systems. In this study, a mathematical model for crowd panic is derived from collective animal dynamics. The development and validation of the model is supported by data from experiments with panicking Argentine ants (Linepithema humile). A first attempt is also made to scale the model parameters for collective pedestrian traffic from those for ant traffic, by employing a scaling concept approach commonly used in biology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号