首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
水路运输   2篇
综合运输   2篇
  2015年   1篇
  2008年   1篇
  1998年   1篇
  1992年   1篇
排序方式: 共有4条查询结果,搜索用时 46 毫秒
1
1.
Individual based numerical simulations of the copepod, Oithona davisae, feeding on motile prey, Oxyrrhis marina, under variable turbulent conditions are performed. These simulations correspond to laboratory observations conducted by Saiz et al. [Saiz, E., Calbet, A., and Broglio, E., 2003. Effects of small-scale turbulence on copepods: the case of Oithona Davisae. Limnol. Oceanogr., 48:1304–1311.].The flow field in the simulation is reconstructed by a kinematic simulation whose characteristic scales are derived from the grid mesh and the dissipation rates of the laboratory experiments. The kinematic simulation provides a simplified model, which while not fully realistic, captures the basic relevant feature of turbulence. A hop and sink swimming behaviour is prescribed for O. davisae, while O. marina moves along helical paths with random changes of directions.Three possible effects are tested: the existence of a time threshold in the duration of the contacts between predator and prey, a progressive reduction of the perceptive distance with increasing turbulence level and an abrupt reduction in feeding of O. davisae when the flow speed, in relation to the copepod position, is higher than a prescribed threshold. This last approach introduces an intermittency in the feeding which depends on the variations of velocity both in space and time within the numerical box.The introduction of the time threshold causes a dome-shaped relationship between the simulated enhancement factor and the dissipation rate, while with the other two effects, a monotonic decrease in the enhancement factor is observed, with values reasonably close to the ones observed in the laboratory experiment. In all the cases, the use of realistic values of biological parameters (e.g. swimming behaviour) reproduces response curves in the range of the observations.  相似文献   
2.
Current air traffic control systems are mainly conceived to ensure the safety of flights by means of tactical interventions, because of the difficulty of accurately foreseeing the traffic evolution. In fact, in real traffic conditions, planes are often penalized since sometimes safety standards are redundant. Today, this management philosophy is no longer valid because of congestion phenomena which often occur in the most important terminal areas. Therefore, as to future control systems it is necessary to introduce not only more automated procedures to keep adequate safety levels, but also planning functions in order to increase the system capacity and to improve system efficiency. In recent years several studies have been carried out, new control concepts have been introduced and some optimization models and algorithms developed to improve air traffic management. In this paper a survey of our early works in this field is reported and a multilevel model of air traffic management is proposed and discussed. The functions corresponding to the on-line control, that is flow control, strategic control of flights and aircraft sequencing in a terminal area, are examined and the optimization models and solution algorithms are illustrated. Finally, relevant problems coped by recent research are mentioned and new trends are indicated.  相似文献   
3.
4.
With road traffic in Europe forecast to increase, strategies are needed to keep transportation sector growth within the bounds imposed by a sustainable development. Research is contributing through a large number of projects dealing with transport–environment interactions. This paper reviews international research activities in this field, focusing on technological innovations, air and noise pollution prediction models, and existing tools for socioeconomic evaluation of traffic impacts on the environment. In particular, research projects of the Second Special Project on Transport (PFT2) of the Italian National Research Council (CNR) are outlined.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号