首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   6篇
公路运输   78篇
综合类   18篇
铁路运输   8篇
综合运输   14篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2016年   1篇
  2015年   4篇
  2014年   6篇
  2012年   2篇
  2011年   5篇
  2010年   8篇
  2009年   10篇
  2008年   11篇
  2007年   12篇
  2006年   13篇
  2005年   10篇
  2004年   6篇
  2003年   4篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1994年   3篇
  1993年   3篇
  1989年   1篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
1.
为解决公路隧道火灾烟气对人员的影响,以单洞对向交通隧道火灾为基础,建立火灾数值计算模型。在火灾烟气控制中引入模糊控制理论,模拟烟雾在隧道内两组射流风机之间200m的区间内往复运动,通过改变射流风机的风速和方向,分析在时间为180、360S内,风速为1.0、1.5m·S-1的火灾烟雾扩散情况,研究了控制区域内烟气的分布和影响规律。计算结果表明:在火灾点两侧分别开启射流风机,间歇为30S、风速为1.0m·S-1的运行烟气属于小振幅运动,烟雾基本控制在火源点左右两侧50~80m的位置;间歇为60S、风速为1.5m·S-1的运行烟气属于大振幅运动,烟雾基本控制在火源点左右两侧80~100m的位置;烟气小振幅运动要优于大振幅运动。  相似文献   
2.
采用空心圆柱仪对上海原状软黏土进行了不排水剪切试验,研究了主应力轴旋转条件下中主应力系数对饱和软黏土变形与强度特性的影响。采用等压固结模式对软黏土空心薄壁试样进行固结,并在3种不同主应力轴旋转角度下,对试样进行不同中主应力系数的不排水剪切试验。试验前提为剪切过程中平均应力、中主应力系数与主应力轴旋转角度均保持不变,而偏应力逐渐增大,直至试样破坏。试验结果表明:在不同中主应力系数下,天然软黏土的变形与强度特征存在明显的差异,在3种主应力轴旋转角度下,随着中主应力系数的增加,临界应力比均呈降低趋势,相应的峰值剪切强度减小;在主应力轴旋转角度为0°时,中主应力系数为0.25和0.50的试样均出现了轻微的应变局部化现象,剪应力在达到峰值后呈逐渐降低的趋势;在主应力轴旋转角度为90°时,中主应力系数为0.50和0.75的试样所对应的状态为内外压不等的非轴对称拉伸状态,二者的峰值剪切强度比较接近,而中主应力系数为1.00的试样对应的为内外压相等的轴对称拉伸状态,其峰值剪切强度相比前二者降低了25%;在内外压相等的加载条件下,主应力轴旋转角度由0°增加为90°的同时,中主应力系数由0增加为1.00,试样破坏时对应的临界应力比与不排水剪切强度均逐渐降低。  相似文献   
3.
为研究沉管隧道节段接头剪力键剪力沿纵向与横向的空间分布规律,文章以地基差异沉降作为试验控制变量,在沉降试验平台上进行了1∶4.69的大比尺沉管节段接头模型试验。同时,在考虑剪力键橡胶垫双线性材料特性及与沉管节段之间、节段与土体之间接触效应的情况下,开展了沉管隧道节段的足尺三维数值模拟。通过模型试验结果与数值模拟结果的对比分析,表明:节段接头剪力键横向剪力分布存在不均衡性,单纯按剪力键榫与剪力键槽接触面积或平均分配接头剪力的设计方法存在一定缺陷;沉管隧道节段接头剪力沿纵向均呈开口向上的二次曲线左半部分的形态进行传递,但随着差异沉降的增大,剪力的衰减速率也在增大;纵向差异沉降时,节段接头剪力影响范围为3个节段;横向差异沉降时,节段接头剪力影响范围为4个节段。相关研究方法与成果可以为沉管隧道接头研究及剪力键设计提供参考与依据。  相似文献   
4.
为研究寒区隧道冻胀力随时间和空间的分布规律, 基于温度场变化定义了测试冻胀力, 通过衬砌压力和钢架应力间接反映真实冻胀力的变化规律; 提出了冻胀力简化测试方法, 研发了温度场-冻胀力同步测试系统; 以四川省省道215线鸡丑山隧道为例, 布置5个测试断面开展大规模现场测试, 并选取典型断面K117+700 (简称700断面) 和K117+600 (简称600断面) 分析了隧道环境温度、围岩温度、衬砌压力与钢架应力; 以围岩冻结(12~次年2月) 和未冻(7~9月) 时对应的衬砌压力和钢架应力差值为测试冻胀力, 结合温度场分析了隧道周边各测点测试冻胀力; 采用现有冻胀模型计算理论冻胀力, 并与测试冻胀力进行了对比, 研究了寒区隧道冻胀规律。分析结果表明: 隧道环境温度随时间呈季节性正弦函数变化, 受环境温度影响, 围岩温度呈季节性正负温变化, 并出现季节性冻融现象; 当围岩为负温时处于冻结状态, 支护系统受到围岩压力和冻胀力的共同作用, 且温度越低冻胀效应越明显, 各断面测点应力峰值均出现在1月, 700断面衬砌和钢架最大应力分别为149kPa、31MPa; 当围岩为正温时处于未冻结状态, 支护系统仅受到围岩压力作用; 同一断面不同测点的测试冻胀力差值可达5.23MPa, 说明冻胀力除与围岩温度有关外, 还与富水条件和围岩级别有关; 最大冻胀力实测值比理论计算值小1.25MPa, 因此, 寒区隧道支护设计时建议考虑89.17%的冻胀力折减系数。   相似文献   
5.
为研究公路隧道双洞互补式通风的适用性,文章基于隧址海拔和温度、隧道长度和纵坡、隧道交通量和交通组成、隧道双洞间距等因素对互补式通风负荷比及通风效果的影响进行计算分析。研究结果表明:当隧道上下行通风负荷比大于1.5或隧道单向纵坡绝对值在1.5%~2.0%之间时,适宜采用互补式通风;隧道长度在4.5~6 km之间时,采用双洞互补式通风最经济实用;交通量和交通组成的影响关系显示隧道大型车混入率在35%~50%之间时宜考虑采用互补式通风;双洞隧道适合采用互补式通风的最小间距为30 m。  相似文献   
6.
黄土地区浅埋暗挖地铁隧道围岩压力特征研究   总被引:2,自引:0,他引:2  
为了解黄土地区浅埋暗挖地铁隧道围岩压力特征,得出荷载在衬砌结构各部分中的分担比例,本文以西安地铁二号线为研究对象,选取2组不同围岩条件的测试断面,开展现场测试工作。对围岩与初期支护接触压力、初期支护与二次衬砌接触压力及二次衬砌结构应力进行研究。结果表明:隧道墙脚位置初期支护与围岩之间接触压力较大,表明这二者承受大部分垂直压力;初期支护所受围岩压力随着土体强度降低而增大,且分布形式更趋于静水压力作用特点;二次衬砌作为主要支护结构承担大部分荷载,初期支护与二次衬砌接触压力随围岩土体强度降低而显著增大,二次衬砌在支护体系中作用也随土体强度降低而凸显;二次衬砌混凝土基本受压,拱腰及以上位置应力较大,仰拱处应力较小。  相似文献   
7.
引入表征钢波纹管波形特性的惯性矩计算方法, 通过Spangler管-土相互作用模型, 得到了钢波纹管涵竖向收敛变形计算公式; 假设管涵顶部填土为半无限直线变形体, 将条形基础沉降倒置后比拟上埋式管涵的受力模型; 基于弹性力学推导的基础沉降计算公式, 着重考虑管涵侧向土体压缩变形与管涵自身的竖向收敛变形之差, 推导了管涵垂直土压力的计算公式; 以广巴广陕高速公路连接线吴家浩-张家湾段高填方钢波纹管涵工程为例, 对涵顶垂直土压力进行了现场测试, 将采用公式计算所得涵顶垂直土压力与现场试验结果和应用实测沉降差反算的垂直土压力进行了对比。研究结果表明: 涵顶垂直土压力随填方高度的增加而增大, 填土至设计标高后涵顶垂直土压力计算值、实测值和反算值分别为224.14、221.98、211.33kPa, 计算值与实测值的相对误差约为0.9%, 反算值分别比计算值和实测值小6.1%、5.0%, 且计算结果、反算结果均与实测涵顶垂直土压力变化规律一致, 填方越高, 误差越小。可见, 提出的高填方钢波纹管涵垂直土压力计算公式可行, 不仅考虑了涵侧土体的抗力系数和基床系数, 而且体现了钢波纹管的变形与受力特征。   相似文献   
8.
结合特长公路隧道竖井送排通风系统设计方案,运用了计算流体动力学(CFD)方法对隧道正洞送排风口间短道流态进行三维数值分析,确定出短道流态的影响因素,并给出确保短道流态满足设计要求的土建设计方法和运营风量调控措施,结论可供相关通风工程设计参考.  相似文献   
9.
以陕西省西咸北环线高速公路工程西吴枢纽立交C匝道路基填筑试验段为依托,研究了建筑垃圾作为路基填料的基本物理性质,结合现场施工分析了建筑垃圾填料压实性能的影响因素,建筑垃圾填料含水率对压实度的影响,合理的碾压遍数及现场建筑垃圾路基回弹模量。结果表明:建筑垃圾填料含水率控制在14.8%~15.0%时,碾压效果最好,碾压遍数超过20次后,压实功对填料的压实效果已不显著。建议超过15遍碾压后,当压实效果趋于平稳时可停止碾压,此时路基回弹模量为155~170 MPa,相应的压实度为97.87%~98.46%。  相似文献   
10.
在公路隧道竖井送排式纵向通风系统中,上下行隧道共用竖井排风的工况日趋广泛,为降低通风能耗,对竖井底部中隔板高度进行物理模型试验研究,测试不同风量和中隔板高度时能量损失的变化规律.结果表明在两隧道需风量比值为0.6~1时,中隔板高度宜取风道高度的0.55~0.65倍.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号