首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
公路运输   1篇
  2000年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
Passive suspensions are designed to dissipate the energy otherwise transferred to a vehicle's body through interactions with a roadway or terrain. A bond graph representation of an independent suspension design was developed to study the energy flow through a vehicle. The bond graph model was tuned and validated through experimental tests and was found to produce suitable results. Examining the bond graph reveals that the dissipated energy associated with vertical and transverse coordinates generally originates from the longitudinal motion of the vehicle and is transferred through the tire-ground contact patch. Additionally, since the longitudinal energy originates from the vehicle's engine, the energy dissipated via the suspension shock absorber as well as other components (e.g., mechanical joints, etc.) essentially dissipate some engine energy. The plots presented in the paper support this theory by showing that upon traveling a rough terrain, the vehicle's longitudinal velocity drops more when vertical vibrations increase. Results show that a vehicle equipped with a passive suspension experiences a larger velocity drop compared to one with an active suspension traversing the same rough terrain. The paper compares the results of simulation of an analytical bond graph model of an active suspension system with experimental results and finds good agreement between the two. Other simulations show that relative to passive suspensions, not only do active suspensions yield substantial improvement in ride quality, they can also result in substantial energy savings. This paper concludes that if electromechanical actuators are supplemented by passive springs to support the vehicle static weight, the amount of energy required for operation of actuators is significantly less than the amount dissipated by conventional shock absorbers.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号