首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   4篇
公路运输   58篇
综合类   1篇
水路运输   5篇
综合运输   25篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   9篇
  2017年   7篇
  2016年   19篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   31篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有89条查询结果,搜索用时 375 毫秒
1.
Knowledge of the current tyre–road friction coefficient is essential for future autonomous vehicles. The environmental conditions, and the tyre–road friction in particular, determine both the braking distance and the maximum cornering velocity and thus set the boundaries for the vehicle. Tyre–road friction is difficult to estimate during normal driving due to low levels of tyre force excitation. This problem can be solved by using active tyre force excitation. A torque is added to one or several wheels in the purpose of estimating the tyre–road friction coefficient. Active tyre force excitation provides the opportunity to design the tyre force excitation freely. This study investigates how the tyre force should be applied to minimise the error of the tyre–road friction estimate. The performance of different excitation strategies was found to be dependent on both tyre model choice and noise level. Furthermore, the advantage with using tyre models with more parameters decreased when noise was added to the force and slip ratio.  相似文献   
2.
The present paper deals with timetable optimisation from the perspective of minimising the waiting time experienced by passengers when transferring either to or from a bus. Due to its inherent complexity, this bi-level minimisation problem is extremely difficult to solve mathematically, since timetable optimisation is a non-linear non-convex mixed integer problem, with passenger flows defined by the route choice model, whereas the route choice model is a non-linear non-continuous mapping of the timetable. Therefore, a heuristic solution approach is developed in this paper, based on the idea of varying and optimising the offset of the bus lines. Varying the offset for a bus line impacts the waiting time passengers experience at any transfer stop on the bus line.In the bi-level timetable optimisation problem, the lower level is a transit assignment calculation yielding passengers’ route choice. This is used as weight when minimising waiting time by applying a Tabu Search algorithm to adapt the offset values for bus lines. The updated timetable then serves as input in the following transit assignment calculation. The process continues until convergence.The heuristic solution approach was applied on the large-scale public transport network in Denmark. The timetable optimisation approach yielded a yearly reduction in weighted waiting time equivalent to approximately 45 million Danish kroner (9 million USD).  相似文献   
3.
Optimum values are selected for the suspension damping and stiffness parameters of complex car models, subjected to road excitation, by applying suitable numerical methodologies. These models result from a detailed finite-element discretisation and possess a relatively large number of degrees of freedom. They also involve strongly nonlinear characteristics, due mostly to large rigid body rotation of some of their components and the properties of the connection elements. First, attention is focused on gaining some insight into the dynamics of the mechanical models examined, resulting when the vehicle passes over roads involving typical geometric profiles. Then, the emphasis is shifted to presenting results obtained by applying appropriate optimisation methodologies. For this purpose, three classes of design criteria are first set up, referring to passenger ride comfort, suspension travel and car road holding and yielding the most important suspension stiffness and damping parameters. Originally, the optimisation is performed by forming a composite cost function and employing a single-objective optimisation method. Since the design criteria are conflicting, a multi-objective optimisation methodology is also set up and applied subsequently.  相似文献   
4.
In this paper, a method for selecting the dynamic characteristics of seat suspension systems is presented. The basic principle of such a method consists in the shaping of nonlinear seat suspension dynamic behaviour for the different requirements defined by machine operators. A combined optimisation procedure has allowed to find the Pareto-optimal system configuration with simultaneous minimisation of conflicted optimisation criteria: the suspended body acceleration and suspension travel. As an example of the proposed method, the seat with a viscous-elastic passive suspension is investigated and its vibro-isolation properties are shaped by the air-spring and shock-absorber force characteristics.  相似文献   
5.
The purpose of this paper is to determine the lumped suspension parameters that minimise a multi-objective function in a vehicle model under different standard PSD road profiles. This optimisation tries to meet the rms vertical acceleration weighted limits for human sensitivity curves from ISO 2631 [ISO-2631: guide for evaluation of human exposure to whole-body vibration. Europe; 1997] at the driver's seat, the road holding capability and the suspension working space. The vehicle is modelled in the frequency domain using eight degrees of freedom under a random road profile. The particle swarm optimisation and sequential quadratic programming algorithms are used to obtain the suspension optimal parameters in different road profile and vehicle velocity conditions. A sensitivity analysis is performed using the obtained results and, in Class G road profile, the seat damping has the major influence on the minimisation of the multi-objective function. The influence of vehicle parameters in vibration attenuation is analysed and it is concluded that the front suspension stiffness should be less stiff than the rear ones when the driver's seat relative position is located forward the centre of gravity of the car body. Graphs and tables for the behaviour of suspension parameters related to road classes, used algorithms and velocities are presented to illustrate the results. In Class A road profile it was possible to find optimal parameters within the boundaries of the design variables that resulted in acceptable values for the comfort, road holding and suspension working space.  相似文献   
6.
This paper presents a closed-loop dynamic simulation-based design method for articulated heavy vehicles (AHVs) with active trailer steering (ATS) systems. AHVs have poor manoeuvrability at low speeds and exhibit low lateral stability at high speeds. From the design point of view, there exists a trade-off relationship between AHVs’ manoeuvrability and stability. For example, fewer articulation points and longer wheelbases will improve high-speed lateral stability, but they will degrade low-speed manoeuvrability. To tackle this conflicting design problem, a systematic method is proposed for the design of AHVs with ATS systems. In order to evaluate vehicle performance measures under a well-defined testing manoeuvre, a driver model is introduced and it ‘drivers’ the vehicle model to follow a prescribed route at a given speed. Considering the interactions between the mechanical trailer and the ATS system, the proposed design method simultaneously optimises the active design variables of the controllers and passive design variables of the trailer in a single design loop (SDL). Through the design optimisation of an ATS system for an AHV with a truck and a drawbar trailer combination, this SDL method is compared against a published two design loop method. The benchmark investigation shows that the former can determine better trade-off design solutions than those derived by the latter. This SDL method provides an effective approach to automatically implement the design synthesis of AHVs with ATS systems.  相似文献   
7.
This paper discusses the nonlinear properties of inerters and their impact on vehicle suspension control. The inerter was recently introduced as an ideal mechanical two-terminal element, which is a substitute for the mass element, where the applied force is proportional to the relative acceleration across the terminals. Until now, ideal inerters have been applied to vehicle, motorcycle and train suspension systems, in which significant performance improvement was achieved. However, due to the mechanical construction, some nonlinear properties of the existing mechanical models of inerters are noted. This paper investigates the inerter nonlinearities, including friction, backlash and the elastic effect, and their influence on vehicle suspension performance. A testing platform is also built to verify the nonlinear properties of the inerter model.  相似文献   
8.
The research aims to study the port selection in liner shipping. The central work is to set up a model to deal with port choice decisions. The model solves three matters: ports on a ship’s route; the order of selected ports and loading/unloading ports for each shipment. Its objective is to minimize total cost including ship cost, port tariff, inland transport cost and inventory cost. The model has been applied in real data, with cargo flows between the USA and Northern Europe. Afterwards, two sensitive analyses are considered. The first assesses the impact of a number of port calls on the total cost which relates closely to the viability of two service patterns: multi ports and hub & spoke. The second analyzes the efficiency of large vessels in the scope of a logistics network. The overriding result of this research is to indicate the influence of logistics factors in the decision of port choice. The research emphasizes the necessity to combine different factors when dealing with this topic, or else a result can be one-sided.  相似文献   
9.
This paper studies multi-objective control of a full-vehicle suspension excited by random road disturbances. The control problem is first formulated as a mixed ?2/? synthesis problem and an output-feedback solution is obtained by using linear-matrix-inequalities. Next, the multi-objective control problem is re-formulated as a non-convex and non-smooth optimisation problem with controller order restricted to be less than the vehicle model order. For a range of orders, controllers are synthesised by using the HIFOO toolbox. The efficacy of the presented procedures are demonstrated by several design examples.  相似文献   
10.
In recent years so-called ‘virtual test rigs’ have become more and more important in the development process of cars and trucks. Originally, the idea was to substitute expensive durability tests with computer simulation. Meanwhile, the focus has changed towards a more cooperative usage of numerical and laboratory rig simulation. For many safety critical issues laboratory tests remain indispensable. In early development stages, when no physical prototypes are available yet, numerical simulation is used to analyse and optimise the design. In this paper, we show how to build numerical simulation models of complex servo-hydraulic test systems and their test specimen using multi-body simulation for the mechanics in combination with simulation models for the hydraulics and controls. We illustrate this at two industrial application examples: a spindle-coupled passenger car suspension rig and a tyre-coupled full vehicle rig. We show how the simulation models are used to design and optimise better test rigs and to support the test rig operation by preparing the physical tests with new specimen, i.e. by performing numerical simulations including numerical drive file iteration before the physical tests start.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号