首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   321篇
  免费   3篇
公路运输   47篇
综合类   117篇
水路运输   57篇
铁路运输   53篇
综合运输   50篇
  2024年   1篇
  2022年   2篇
  2021年   3篇
  2020年   5篇
  2019年   1篇
  2018年   8篇
  2017年   5篇
  2016年   9篇
  2015年   21篇
  2014年   9篇
  2013年   19篇
  2012年   28篇
  2011年   17篇
  2010年   14篇
  2009年   20篇
  2008年   12篇
  2007年   27篇
  2006年   33篇
  2005年   23篇
  2004年   16篇
  2003年   7篇
  2002年   11篇
  2001年   11篇
  2000年   6篇
  1999年   2篇
  1998年   6篇
  1997年   4篇
  1996年   2篇
  1994年   2篇
排序方式: 共有324条查询结果,搜索用时 46 毫秒
1.
描述了将专家系统理论应用于分散自律调度集中系统的车站自律机的设计,给出了自律机专家系统的知识库、推理机的构架及原理,并介绍了自律机知识库自学习机制.由于采用了专家系统,从而提高了自律机的自动化和智能化程度.  相似文献   
2.
杨奕飞  冯静 《船舶工程》2018,40(3):68-72
船舶动力设备因故障监测信号样本少、变化缓慢且数据特征呈非线性,使得设备故障模式的准确识别和状态预测比较难。鉴于此,文章研究了基于隐马尔科夫模型的故障模式识别方法,利用该模型将微弱变化的信号特征转换为变化较大的对数似然概率对故障模式实现有效识别。在此基础上进一步提出基于HMM-SVR的设备状态预测模型,将遗传算法用于支持向量回归模型参数寻优,并结合隐马尔科夫模型,实现对设备状态的预测。对船用柴油机进行仿真,结果表明上述模型具有较高的识别率,能准确预测船舶动力设备的当前状态。  相似文献   
3.
The present paper describes how to use coordination between neighbouring intersections in order to improve the performance of urban traffic controllers. Both the local MPC (LMPC) introduced in the companion paper (Hao et al., 2018) and the coordinated MPC (CMPC) introduced in this paper use the urban cell transmission model (UCTM) (Hao et al., 2018) in order to predict the average delay of vehicles in the upstream links of each intersection, for different scenarios of switching times of the traffic lights at that intersection. The feedback controller selects the next switching times of the traffic light corresponding to the shortest predicted average delay. While the local MPC (Hao et al., 2018) only uses local measurements of traffic in the links connected to the intersection in comparing the performance of different scenarios, the CMPC approach improves the accuracy of the performance predictions by allowing a control agent to exchange information about planned switching times with control agents at all neighbouring intersections. Compared to local MPC the offline information on average flow rates from neighbouring intersections is replaced in coordinated MPC by additional online information on when the neighbouring intersections plan to send vehicles to the intersection under control. To achieve good coordination planned switching times should not change too often, hence a cost for changing planned schedules from one decision time to the next decision time is added to the cost function. In order to improve the stability properties of CMPC a prediction of the sum of squared queue sizes is used whenever some downstream queues of an intersection become too long. Only scenarios that decrease this sum of squares of local queues are considered for possible implementation. This stabilization criterion is shown experimentally to further improve the performance of our controller. In particular it leads to a significant reduction of the queues that build up at the edges of the traffic region under control. We compare via simulation the average delay of vehicles travelling on a simple 4 by 4 Manhattan grid, for traffic lights with pre-timed control, traffic lights using the local MPC controller (Hao et al., 2018), and coordinated MPC (with and without the stabilizing condition). These simulations show that the proposed CMPC achieves a significant reduction in delay for different traffic conditions in comparison to these other strategies.  相似文献   
4.
To curb emissions, containerized shipping lines face the traditional trade-off between cost and emissions (CO2 and SOx) reduction. This paper considers this element in the context of liner service design and proposes a mixed integer linear programming (MILP) model based on a multi-commodity pickup and delivery arc-flow formulation. The objective is to maximize the profit by selecting the ports to be visited, the sequence of port visit, the cargo flows between ports, as well as the number/operating speeds of vessels on each arc of the selected route. The problem also considers that Emission Control Areas (ECAs) exist in the liner network and accounts for the vessel carrying capacity. In addition to using the MILP solver of CPLEX, we develop in the paper a specific genetic algorithm (GA) based heuristic and show that it gives the possibility to reach an optimal solution when solving large size instances.  相似文献   
5.
Two-dimensional multi-objective optimizations have been used for decades for the problems in traffic engineering although only few times so far in the optimization of signal timings. While the other engineering and science disciplines have utilized visualization of 3-dimensional Pareto fronts in the optimization studies, we have not seen many of those concepts applied to traffic signal optimization problems. To bridge the gap in the existing knowledge this study presents a methodology where 3-dimensional Pareto Fronts of signal timings, which are expressed through mobility, (surrogate) safety, and environmental factors, are optimized by use of an evolutionary algorithm. The study uses a segment of 5 signalized intersections in West Valley City, Utah, to test signal timings which provide a balance between mobility, safety and environment. In addition, a set of previous developed signal timing scenarios, including some of the Connected Vehicle technologies such as GLOSA, were conducted to evaluate the quality of the 3-dimensional Pareto front solutions. The results show success of 3-dimensinal Pareto fronts moving towards optimality. The resulting signal timing plans do not show large differences between themselves but all improve on the signal timings from the field, significantly. The commonly used optimization of standard single-objective functions shows robust solutions. The new set of Connected Vehicle technologies also shows promising benefits, especially in the area of reducing inter-vehicular friction. The resulting timing plans from two optimization sets (constrained and unconstrained) show that environmental and safe signal timings coincide but somewhat contradict mobility. Further research is needed to apply similar concepts on a variety of networks and traffic conditions before generalizing findings.  相似文献   
6.
Traffic congestion and energy issues have set a high bar for current ground transportation systems. With advances in vehicular communication technologies, collaborations of connected vehicles have becoming a fundamental block to build automated highway transportation systems of high efficiency. This paper presents a distributed optimal control scheme that takes into account macroscopic traffic management and microscopic vehicle dynamics to achieve efficiently cooperative highway driving. Critical traffic information beyond the scope of human perception is obtained from connected vehicles downstream to establish necessary traffic management mitigating congestion. With backpropagating traffic management advice, a connected vehicle having an adjustment intention exchanges control-oriented information with immediately connected neighbors to establish potential cooperation consensus, and to generate cooperative control actions. To achieve this goal, a distributed model predictive control (DMPC) scheme is developed accounting for driving safety and efficiency. By coupling the states of collaborators in the optimization index, connected vehicles achieve fundamental highway maneuvers cooperatively and optimally. The performance of the distributed control scheme and the energy-saving potential of conducting such cooperation are tested in a mixed highway traffic environment by the means of microscopic simulations.  相似文献   
7.
The development and calibration of complex traffic models demands parsimonious techniques, because such models often involve hundreds of thousands of unknown parameters. The Weighted Simultaneous Perturbation Stochastic Approximation (W-SPSA) algorithm has been proven more efficient than its predecessor SPSA (Spall, 1998), particularly in situations where the correlation structure of the variables is not homogeneous. This is crucial in traffic simulation models where effectively some variables (e.g. readings from certain sensors) are strongly correlated, both in time and space, with some other variables (e.g. certain OD flows). In situations with reasonably sized traffic networks, the difference is relevant considering computational constraints. However, W-SPSA relies on determining a proper weight matrix (W) that represents those correlations, and such a process has been so far an open problem, and only heuristic approaches to obtain it have been considered.This paper presents W-SPSA in a formally comprehensive way, where effectively SPSA becomes an instance of W-SPSA, and explores alternative approaches for determining the matrix W. We demonstrate that, relying on a few simplifications that marginally affect the final solution, we can obtain W matrices that considerably outperform SPSA. We analyse the performance of our proposed algorithm in two applications in motorway networks in Singapore and Portugal, using a dynamic traffic assignment model and a microscopic traffic simulator, respectively.  相似文献   
8.
基于神经网络和遗传算法的系泊线长度参数优化   总被引:1,自引:0,他引:1  
摘 要: 针对多成分系泊线三段长度如何取值的问题,采用一种基于神经网络和遗传算法对深海多成分锚泊系统长度进行优化。应用AQWA软件计算多点系泊FPSO,其时域结果直接用于训练BP神经网络。从而利用神经网络的非线性映射功能构建替代锚泊时域计算网络,大大缩短了优化所需的时间。以FPSO最小平面运动值为目标函数,锚链破断强度作为约束条件,采用遗传算法优化系泊长度。计算结果表明,与传统设计的锚泊长度相比,优化后FPSO在各个浪向下纵荡横荡值均能减少20%以上。 关键词:系泊;神经网络;遗传算法;优化  相似文献   
9.
基于船舶稳性实时计算技术研究船舶实时状态三维模型数字化算法用于快速计算船舶的大倾角稳性、破舱稳性和平衡浮态。参考遗传算法研究船舶破损智能扶正方案生成算法来实现智能生成扶正方案功能。然后运用上述两种核心算法设计船舶破损智能扶正系统软件,为船舶在突发破损事故时提供一套包含压载水调拨措施与步骤建议的智能扶正方案,提高船舶破损事故的处理能力。  相似文献   
10.
有效的目标跟踪需要积极的传感器节点对运动目标群实行跟踪。与单目标跟踪相比,聚类在效能上有显著提高。本文提出准确的相干和非相干运动模式下目标的聚类,采用隐式动态时间框架来评估在创建连接组件加权图的目标关系史。该算法采用目标跟踪中定位算法的关键特征,即估计当前和预测的位置来确定移动目标的方向和距离的关系。模拟结果显示,通过动态调整历史窗口大小和预测目标之间的关系,可以显著提高聚类的准确性并减少运算时间。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号