首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
综合类   3篇
综合运输   13篇
  2017年   1篇
  2016年   1篇
  2015年   6篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2006年   2篇
  2005年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
The development and calibration of complex traffic models demands parsimonious techniques, because such models often involve hundreds of thousands of unknown parameters. The Weighted Simultaneous Perturbation Stochastic Approximation (W-SPSA) algorithm has been proven more efficient than its predecessor SPSA (Spall, 1998), particularly in situations where the correlation structure of the variables is not homogeneous. This is crucial in traffic simulation models where effectively some variables (e.g. readings from certain sensors) are strongly correlated, both in time and space, with some other variables (e.g. certain OD flows). In situations with reasonably sized traffic networks, the difference is relevant considering computational constraints. However, W-SPSA relies on determining a proper weight matrix (W) that represents those correlations, and such a process has been so far an open problem, and only heuristic approaches to obtain it have been considered.This paper presents W-SPSA in a formally comprehensive way, where effectively SPSA becomes an instance of W-SPSA, and explores alternative approaches for determining the matrix W. We demonstrate that, relying on a few simplifications that marginally affect the final solution, we can obtain W matrices that considerably outperform SPSA. We analyse the performance of our proposed algorithm in two applications in motorway networks in Singapore and Portugal, using a dynamic traffic assignment model and a microscopic traffic simulator, respectively.  相似文献   
2.
Once limited to the military domain, unmanned aerial vehicles are now poised to gain widespread adoption in the commercial sector. One such application is to deploy these aircraft, also known as drones, for last-mile delivery in logistics operations. While significant research efforts are underway to improve the technology required to enable delivery by drone, less attention has been focused on the operational challenges associated with leveraging this technology. This paper provides two mathematical programming models aimed at optimal routing and scheduling of unmanned aircraft, and delivery trucks, in this new paradigm of parcel delivery. In particular, a unique variant of the classical vehicle routing problem is introduced, motivated by a scenario in which an unmanned aerial vehicle works in collaboration with a traditional delivery truck to distribute parcels. We present mixed integer linear programming formulations for two delivery-by-drone problems, along with two simple, yet effective, heuristic solution approaches to solve problems of practical size. Solutions to these problems will facilitate the adoption of unmanned aircraft for last-mile delivery. Such a delivery system is expected to provide faster receipt of customer orders at less cost to the distributor and with reduced environmental impacts. A numerical analysis demonstrates the effectiveness of the heuristics and investigates the tradeoffs between using drones with faster flight speeds versus longer endurance.  相似文献   
3.
Novel Local Search Method for the Traveling Salesman Problem   总被引:1,自引:0,他引:1  
A new local search method for the traveling salesman problem based on an original greedy representation of solution space and neighborhood structure is proposed. First, a partial closed route that only consists of three cities is given; then other cities are added to this route by a greedy procedure successively. Implemented on a personal computer, this algorithm finds optimal solutions for 24 out of 27 standard benchmarks, and outperforms the Full Subpath Ejection Algorithm (F-SEC) proposed by Rego in 1998.  相似文献   
4.
There is substantial evidence to indicate that route choice in urban areas is complex cognitive process, conducted under uncertainty and formed on partial perspectives. Yet, conventional route choice models continue make simplistic assumptions around the nature of human cognitive ability, memory and preference. In this paper, a novel framework for route choice in urban areas is introduced, aiming to more accurately reflect the uncertain, bounded nature of route choice decision making. Two main advances are introduced. The first involves the definition of a hierarchical model of space representing the relationship between urban features and human cognition, combining findings from both the extensive previous literature on spatial cognition and a large route choice dataset. The second advance involves the development of heuristic rules for route choice decisions, building upon the hierarchical model of urban space. The heuristics describe the process by which quick, ‘good enough’ decisions are made when individuals are faced with uncertainty. This element of the model is once more constructed and parameterised according to findings from prior research and the trends identified within a large routing dataset. The paper outlines the implementation of the framework within a real-world context, validating the results against observed behaviours. Conclusions are offered as to the extension and improvement of this approach, outlining its potential as an alternative to other route choice modelling frameworks.  相似文献   
5.
The tractor and semitrailer routing problem with many-to-many demand (TSRP-MMD) is investigated in this study. The TSRP-MMD extends the existing studies on the rollon–rolloff vehicle routing problem (RRVRP) to a many-to-many problem with an intercity line-haul network background. To demonstrate and utilize the energy efficiency of the tractor and semitrailer combination, the TSRP-MMD takes carbon dioxide (CO2) emissions per ton-kilometer as the objective. Because the problem is NP-hard, a modified Clarke and Wright Savings heuristic algorithm (CW) followed by an improvement phase and a local search phase is developed to solve the TSRP-MMD. The integer program is used to find optimum solutions for small-scale problems. The computational results show that the developed heuristics can be efficiently used to solve the problem.  相似文献   
6.
The objective of the research described in this paper was to develop a model for computation of an ultimate capacity of a single track line and to provide a sensitivity analysis of this capacity to the parameters which influence it. The model is based in a concept of mathematical expectation of capacity and can be applied under saturation conditions i.e. a constant demand for service. It can serve for planning purposes, computation of single track line capacity on the base of which estimations are possible concerning a single track line performance under given conditions, as well as commercial time‐tables planning, decisions about a partial or complete construction of the second parallel track along the line in service, intermediate stations locations planning and the necessary facilities along the line under construction.

In the sensitivity analysis, the model allows a change of parameters upon which the capacity depends. These are: the length of the line segment which is considered to be bottleneck for calculation of capacity, traffic distributions per directions, train mix, train velocities and train spacing rules applied by the dispatching service when regulating the traffic on a line.  相似文献   
7.
We study the freight forwarder’s shipment planning problem in an airfreight forwarding network where a set of cargo shipments have to be transported to given destinations. We provide mixed integer programming formulations that use piecewise-linear cargo rates and account for volume and weight constraints, flight departure/arrival times, as well as shipment-ready times.After exploring the solution of such models using CPLEX, we devise two solution methodologies to handle large problem sizes. The first is based on Lagrangian relaxation, where the problems decompose into a set of knapsack problems and a set of network flow problems. The second is a local branching heuristic that combines branching ideas and local search. The two approaches show promising results in providing good quality heuristic solutions within reasonable computational times, for difficult and large shipment consolidation problems.  相似文献   
8.
Taxis make an important contribution to transport in many parts of the world, offering demand‐responsive, door‐to‐door transport. In larger cities, taxis may be hailed on‐street or taken from taxi ranks. Elsewhere, taxis are usually ordered by phone. The objective of a taxi dispatcher is to maximize the efficiency of fleet utilization. While the spatial and temporal distribution of taxi requests has in general a high degree of predictability, real time traffic congestion information can be collected and disseminated to taxis by communication technologies. The efficiency of taxi dispatching may be significantly improved through the anticipation of future requests and traffic conditions. A rolling horizon approach to the optimisation of taxi dispatching is formulated, which takes the stochastic and dynamic nature of the problem into account. Numerical experiments are presented to illustrate the performances of the heuristics, taking the time dependency of travel times and passenger arrivals into account.  相似文献   
9.
The aeronautical industry is still under expansion in spite of the problems it is facing due to the increase in oil prices, limited capacity, and novel regulations. The expansion trends translate into problems at different locations within an airport system and are more evident when the resources to cope with the demand are limited or are reaching to theirs limits. In the check-in areas they are appreciated as excessive waiting times which in turn are appreciated by the customers as bad service levels. The article presents a novel methodology that combines an evolutionary algorithm and simulation in order to give the best results taking into account not only the mandatory hard and soft rules determined by the internal policies of an airport terminal but also the quality indicators which are very difficult to include using an abstract representation. The evolutionary algorithm is developed to satisfy the different mandatory restrictions for the allocation problem such as minimum and maximum number of check-in desks per flight, load balance in the check-in islands, opening times of check-in desks and other restrictions imposed by the level of service agreement. Once the solutions are obtained, a second evaluation is performed using a simulation model of the terminal that takes into account the stochastic aspects of the problem such as arriving profiles of the passengers, opening times physical configurations of the facility among other with the objective to determine which allocation is the most efficient in real situations in order to maintain the quality indicators at the desired level.  相似文献   
10.
Local density, which is an indicator for comfortable moving of a pedestrian, is rarely considered in traditional force based and heuristics based pedestrian flow models. However, comfortable moving is surely a demand of pedestrian in normal situations. Recently, Voronoi diagram had been successfully adopted to obtain the local density of a pedestrian in empirical studies. In this paper, Voronoi diagram is introduced into the heuristics based pedestrian flow model. It provides not only local density but also other information for determining moving velocity and direction. Those information include personal space, safe distance, neighbors, and three elementary characteristics directions. Several typical scenarios are set up to verify the proposed model. The simulation results show that the velocity-density relations and capacities of bottleneck are consistent with the empirical data, and many self-organization phenomena, i.e., arching phenomenon and lane formation, are also reproduced. The pedestrians are likely to be homogeneously distributed when they are sensitive to local density, otherwise pedestrians are non-uniformly distributed and the stop-and-go waves are likely to be reproduced. Such results indicate that the Voronoi diagram is a promising tool in modeling pedestrian dynamics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号