首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
综合运输   3篇
  2018年   1篇
  2017年   1篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 31 毫秒
1
1.
This paper illustrates a ride matching method for commuting trips based on clustering trajectories, and a modeling and simulation framework with ride-sharing behaviors to illustrate its potential impact. It proposes data mining solutions to reduce traffic demand and encourage more environment-friendly behaviors. The main contribution is a new data-driven ride-matching method, which tracks personal preferences of road choices and travel patterns to identify potential ride-sharing routes for carpool commuters. Compared with prevalent carpooling algorithms, which allow users to enter departure and destination information for on-demand trips, the proposed method focuses more on regular commuting trips. The potential effectiveness of the approach is evaluated using a traffic simulation-assignment framework with ride-sharing participation using the routes suggested by our algorithm. Two types of ride-sharing participation scenarios, with and without carpooling information, are considered. A case study with the Chicago tested is conducted to demonstrate the proposed framework’s ability to support better decision-making for carpool commuters. The results indicate that with ride-matching recommendations using shared vehicle trajectory data, carpool programs for commuters contribute to a less congested traffic state and environment-friendly travel patterns.  相似文献   
2.
The recently emerging trend of self-driving vehicles and information sharing technologies, made available by private technology vendors, starts creating a revolutionary paradigm shift in the coming years for traveler mobility applications. By considering a deterministic traveler decision making framework at the household level in congested transportation networks, this paper aims to address the challenges of how to optimally schedule individuals’ daily travel patterns under the complex activity constraints and interactions. We reformulate two special cases of household activity pattern problem (HAPP) through a high-dimensional network construct, and offer a systematic comparison with the classical mathematical programming models proposed by Recker (1995). Furthermore, we consider the tight road capacity constraint as another special case of HAPP to model complex interactions between multiple household activity scheduling decisions, and this attempt offers another household-based framework for linking activity-based model (ABM) and dynamic traffic assignment (DTA) tools. Through embedding temporal and spatial relations among household members, vehicles and mandatory/optional activities in an integrated space-time-state network, we develop two 0–1 integer linear programming models that can seamlessly incorporate constraints for a number of key decisions related to vehicle selection, activity performing and ridesharing patterns under congested networks. The well-structured network models can be directly solved by standard optimization solvers, and further converted to a set of time-dependent state-dependent least cost path-finding problems through Lagrangian relaxation, which permit the use of computationally efficient algorithms on large-scale high-fidelity transportation networks.  相似文献   
3.
Smartphone technology enables dynamic ride-sharing systems that bring together people with similar itineraries and time schedules to share rides on short-notice. This paper considers the problem of matching drivers and riders in this dynamic setting. We develop optimization-based approaches that aim at minimizing the total system-wide vehicle miles incurred by system users, and their individual travel costs. To assess the merits of our methods we present a simulation study based on 2008 travel demand data from metropolitan Atlanta. The simulation results indicate that the use of sophisticated optimization methods instead of simple greedy matching rules substantially improve the performance of ride-sharing systems. Furthermore, even with relatively low participation rates, it appears that sustainable populations of dynamic ride-sharing participants may be possible even in relatively sprawling urban areas with many employment centers.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号