首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进极限学习机的公交站点 短时客流预测方法
作者姓名:黄益绍  韩磊
作者单位:长沙理工大学道路灾变防治及交通安全教育部工程研究中心,长沙410114;长沙理工大学交通运输工程学院,长沙410114;长沙理工大学道路灾变防治及交通安全教育部工程研究中心,长沙410114;长沙理工大学交通运输工程学院,长沙410114
基金项目:湖南省自然科学基金/Natural Science Foundation of Hunan Province, China(2018JJ2444);湖南省教育厅科学研究重点项目/Scientific Research Key Project of Hunan Province Department of Education(16A 007);长沙理工大学道路灾变防治及交通安全教育部工程研究中心开放基金/ Open Fund of Engineering Research Center of Catastrophic Prophylaxis and Treatment of Road & Traffic Safety of Ministry of Education (Changsha University of Science & Technology(kfj140401).
摘    要:以公交车IC 卡和GPS数据为基础,提出了一种基于改进粒子群算法优化极限学习机(IPSO-ELM)的公交站点短时客流预测模型.依托IC 卡和GPS 数据在站点的特征表现和内在联系,定义了站点间距,并分析了站间距和车辆到总站距离间的联系;提出了公交乘客上车站点确定方法,进而得到公交站点上车客流量;通过分析公交客流数据特征,确定ELM输入参数维度,并采用IPSO 算法找到ELM的最优隐含层节点参数;最后依托广州市19 路公交车客流数据仓库进行了方法验证.结果表明:所用优化后的ELM方法预测误差在10%以内,并与应用广泛的SVM、ARIMA和传统ELM模型进行对比分析,发现改进的ELM方法拥有更高的可靠性和泛化性能.

关 键 词:城市交通  公交站点短时客流预测  改进粒子群算法  极限学习机  IC卡数据  GPS数据
收稿时间:2019-01-11
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号