首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Impact of Visible-Solar-Light-Driven photocatalytic pavement on air quality improvement
Institution:Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
Abstract:Photocatalytic pavement has attracted significant interest in the past decades by both the academia and industry for its ability of spontaneous cleaning of air pollutants, such as motor vehicle exhaust gas. Titanium dioxide (TiO2) is used as the photocatalyst that is mixed into pavement materials or coated on the pavement to remove motor vehicle exhaust gases, e.g., carbon monoxide (CO), nitrogen oxides (NOx), under the irradiation of the solar light. However, the pure TiO2 additive only absorbs the light within the ultraviolet region due to its large bandgap. One approach to increase the ability of TiO2 to the utilization of the full spectrum of the solar light is doping TiO2. Therefore, this visible-solar-light-driven photocatalytic pavement embedded with doped-TiO2 will exhibits a better cleaning efficiency of exhaust gas. This work conducted computational simulations of the cleaning efficiency on reducing exhaust gas NO2 by photocatalytic pavement with doped-TiO2, and its subsequent influence on the air quality in the surrounding environment. A three-dimensional model was developed for a section of pavement and its vicinal region. Effects of weather conditions, doped-TiO2 coverages, road widths and traffic flow conditions on the removal of NO2 and its influence to the adjacent environment were studied. Results indicate that visible-solar-light-driven photocatalytic pavement with doped-TiO2 features a significantly higher removal efficiency of exhaust gas compared with the normal photocatalytic pavement. Moreover, the doped-TiO2 embedded pavement is effective to remove NO2 with different traffic densities and wind conditions, and consequently improve the air quality of the surrounding environment.
Keywords:Vehicle exhaust emissions  Air quality improvement  Environmental impact  Transportation pollution
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号