首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Trends in life cycle greenhouse gas emissions of future light duty electric vehicles
Institution:1. Department of Civil and Environmental Engineering, University of California, Davis, USA;2. Energy and Efficiency Institute, University of California, Davis, USA;3. Institute of Transportation Studies, University of California, Davis, USA;4. Union of Concerned Scientists, Oakland, CA, USA
Abstract:The majority of previous studies examining life cycle greenhouse gas (LCGHG) emissions of battery electric vehicles (BEVs) have focused on efficiency-oriented vehicle designs with limited battery capacities. However, two dominant trends in the US BEV market make these studies increasingly obsolete: sales show significant increases in battery capacity and attendant range and are increasingly dominated by large luxury or high-performance vehicles. In addition, an era of new use and ownership models may mean significant changes to vehicle utilization, and the carbon intensity of electricity is expected to decrease. Thus, the question is whether these trends significantly alter our expectations of future BEV LCGHG emissions.To answer this question, three archetypal vehicle designs for the year 2025 along with scenarios for increased range and different use models are simulated in an LCGHG model: an efficiency-oriented compact vehicle; a high performance luxury sedan; and a luxury sport utility vehicle. While production emissions are less than 10% of LCGHG emissions for today’s gasoline vehicles, they account for about 40% for a BEV, and as much as two-thirds of a future BEV operated on a primarily renewable grid. Larger battery systems and low utilization do not outweigh expected reductions in emissions from electricity used for vehicle charging. These trends could be exacerbated by increasing BEV market shares for larger vehicles. However, larger battery systems could reduce per-mile emissions of BEVs in high mileage applications, like on-demand ride sharing or shared vehicle fleets, meaning that trends in use patterns may countervail those in BEV design.
Keywords:EVs  Batteries  LCA  Carbon footprint  Electric mobility  Shared mobility
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号