首页 | 本学科首页   官方微博 | 高级检索  
     

超深层黄土滑坡作用下既有隧道结构体系力学特征
引用本文:孙明磊,朱永全,李新志,何本国. 超深层黄土滑坡作用下既有隧道结构体系力学特征[J]. 西南交通大学学报, 2022, 57(1): 148-157. DOI: 10.3969/j.issn.0258-2724.20200637
作者姓名:孙明磊  朱永全  李新志  何本国
作者单位:1.石家庄铁道大学土木工程学院,河北 石家庄 0500432.石家庄铁道大学省部共建交通工程结构力学行为与系统安全国家重点实验室,河北 石家庄 0500433.东北大学深部金属矿山安全开采教育部重点实验室,辽宁 沈阳 110819
基金项目:国家自然科学基金(51778380);
摘    要:黄土地区滑坡灾害频发,滑坡尤其是超深层滑坡对既有隧道结构受力变形有重要影响,隧道滑坡体系变形特性、力学响应一直是学术界和工程界关注的焦点.?以某超深层滑坡地质灾害中的铁路隧道工程为依托,建立了"超深层黄土边坡-滑带-隧道"FLAC3D三维数值模型;利用基于位移突变的局部强度折减法模拟坡体失稳临界状态;针对不同滑带隧道相...

关 键 词:隧道  滑坡  强度折减法  衬砌  力学特征  变形
收稿时间:2020-09-17

Mechanical Characteristics of Existing Tunnel Structure Affected by Super Deep Loess Landslide
SUN Minglei,ZHU Yongquan,LI Xinzhi,HE Benguo. Mechanical Characteristics of Existing Tunnel Structure Affected by Super Deep Loess Landslide[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 148-157. DOI: 10.3969/j.issn.0258-2724.20200637
Authors:SUN Minglei  ZHU Yongquan  LI Xinzhi  HE Benguo
Affiliation:1.School of Civil Engineering,Shijiazhuang Tiedao University,Shijiazhuang 050043,China2.State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University,Shijiazhuang 050043,China3.Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines,Northeastern University,Shenyang 110819,China
Abstract:Landslide disasters occur frequently in loess area. Landslides, especially super deep landslides, have a significant impact on the stress and deformation of existing tunnel structures. The deformation characteristics and mechanical responses of tunnel-landslide systems are extremely complex and have been the focus of academic and engineering researchers. Based on a railway tunnel project in a super deep landslide geological disaster, a three-dimensional numerical model of the "super deep loess slope-sliding zone-tunnel" system was established using FLAC3D. The local strength reduction method based on displacement mutation was used to simulate the critical state of slope instability, and variation laws of the mechanical and deformation characteristics of the existing lining structure induced by landslide were analyzed for cases of different relative positions between sliding zones and tunnels. In addition, combined with field measurements and structural damage conditions, the causes of engineering accidents were preliminarily analyzed. Numerical simulations indicate that when the sliding zone is above the tunnel, the surrounding rock exerts a significant pulling effect on the tunnel, and the maximum horizontal displacement of 27.83 mm occurs at the wall foot; when the sliding zone is below the tunnel, the tunnel structure has an obvious overall lateral translation, resulting in a maximum horizontal displacement of 185.61 mm at the wall foot. The most dangerous case is when the tunnel is above the sliding surface. The field measurements indicate that the tunnel has an overall lateral translation perpendicular to the longitudinal axis. The maximum translation (105.35 mm) at the wall foot is smaller than the case when the sliding zone locates below the tunnel. Results also show that the selected tunnel project was built in a loess (silt)-bedrock landslide, which is still in a creeping state and has not yet reached the sliding critical state. 
Keywords:
点击此处可从《西南交通大学学报》浏览原始摘要信息
点击此处可从《西南交通大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号