首页 | 本学科首页   官方微博 | 高级检索  
     

情感分类器结合Norton模型预测汽车销量
引用本文:顾洪建,张帆,万甜甜,张衡. 情感分类器结合Norton模型预测汽车销量[J]. 时代汽车, 2021, 0(3): 165-167
作者姓名:顾洪建  张帆  万甜甜  张衡
作者单位:中国汽车技术研究中心有限公司
摘    要:
为了在"互联网+大数据+人工智能+区块链+物联网"高度信息化的社会精准预测汽车销量,本文首先利用词图、维特比等算法对汽车评价内容进行分词操作来获取关键词语;其次利用朴素贝叶斯分类器的方法对分词的结果进行计算,获得每条评论内容的情感指数;再次利用Norton模型的三代产品模型结合情感指数来组成拟合模型,同时利用最小二乘原...

关 键 词:词图  维特比  情感指数  朴素贝叶斯  Norton模型  最小二乘法

Sentiment Classifier Combined With Norton Model to Predict Car Sales
Gu Hongjian,Zhang Fan,Wan Tiantian,Zhang Heng. Sentiment Classifier Combined With Norton Model to Predict Car Sales[J]. , 2021, 0(3): 165-167
Authors:Gu Hongjian  Zhang Fan  Wan Tiantian  Zhang Heng
Abstract:
In order to accurately predict the sales of cars in a highly informatized society of"Internet+Big Data+Artificial Intelligence+Blockchain+Internet of Things",this article first uses word graphs,Viterbi and other algorithms to segment the car evaluation content to obtain the keywords;secondly,the article uses the naive Bayes classifier method to calculate the result of word segmentation to obtain the sentiment index of each review content;thirdly the article uses the three-generation product model of the Norton model combined with the sentiment index to form a fitting model,while the principle of the square method is used to estimate the fifteen parameters of the fitting model;finally,the estimated parameters are combined with the review data of a certain car and the car sales of each quarter to verify the model;the accuracy of the verification results is as high as 91.29%.This model can basically meet the actual forecasting needs,and can provide reference and basis for the reasonable production planning of the enterprise.
Keywords:word graph  Viterbi  sentiment index  naive Bayes  Norton model  least square method
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号