首页 | 本学科首页   官方微博 | 高级检索  
     


Automatic semantic analysis of software requirements through machine learning and ontology approach
Authors:Yinglin Wang
Affiliation:1.Department of Computer Science and Technology,Shanghai University of Finance and Economics,Shanghai,China
Abstract:
Nowadays, software requirements are still mainly analyzed manually, which has many drawbacks (such as a large amount of labor consumption, inefficiency, and even inaccuracy of the results). The problems are even worse in domain analysis scenarios because a large number of requirements from many users need to be analyzed. In this sense, automatic analysis of software requirements can bring benefits to software companies. For this purpose, we proposed an approach to automatically analyze software requirement specifications (SRSs) and extract the semantic information. In this approach, a machine learning and ontology based semantic role labeling (SRL) method was used. First of all, some common verbs were calculated from SRS documents in the E-commerce domain, and then semantic frames were designed for those verbs. Based on the frames, sentences from SRSs were selected and labeled manually, and the labeled sentences were used as training examples in the machine learning stage. Besides the training examples labeled with semantic roles, external ontology knowledge was used to relieve the data sparsity problem and obtain reliable results. Based on the SemCor and WordNet corpus, the senses of nouns and verbs were identified in a sequential manner through the K-nearest neighbor approach. Then the senses of the verbs were used to identify the frame types. After that, we trained the SRL labeling classifier with the maximum entropy method, in which we added some new features based on word sense, such as the hypernyms and hyponyms of the word senses in the ontology. Experimental results show that this new approach for automatic functional requirements analysis is effective.
Keywords:
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号