首页 | 本学科首页   官方微博 | 高级检索  
     

基于频率和形状特征的脉冲重复间隔调制识别
引用本文:荣海娜,张葛祥,金炜东. 基于频率和形状特征的脉冲重复间隔调制识别[J]. 西南交通大学学报, 2007, 42(2): 194-199
作者姓名:荣海娜  张葛祥  金炜东
作者单位:西南交通大学电气工程学院,四川,成都,610031
基金项目:国家自然科学基金资助项目(60572143)
摘    要:
根据雷达信号脉冲序列的特点,从雷达脉冲信号中提取频率特征和形状特征,构成二维特征向量,并用支持向量机设计多类别分类器,实现雷达信号PRI调制信号的自动识别.实验结果表明,对特征向量进行大幅度降维(从64维降到2维)后,既简化了分类器,又保持或提高了识别率和抗噪声性能.与原特征向量相比,对无噪样本的误识率从0.15%~0.25%降低到0.00%,对有噪样本的误识率从0.40%~1.30%降低到0.15%~0.93%.

关 键 词:识别 雷达信号 脉冲重复间隔 支持向量机 频率 形状
文章编号:0258-2724(2007)02-0194-06
修稿时间:2006-01-19

Pulse Repetition Interval Modulation Recognition Based on Frequencies and Patterns
RONG Haina,ZHANG Gexiang,JIN Weidong. Pulse Repetition Interval Modulation Recognition Based on Frequencies and Patterns[J]. Journal of Southwest Jiaotong University, 2007, 42(2): 194-199
Authors:RONG Haina  ZHANG Gexiang  JIN Weidong
Affiliation:School of Electrical Eng. , Southwest Jiaotong University, Chengdu 610031, China
Abstract:
According to the characteristics of pulse trains of radar signals, frequency and pattern are extracted from radar emitter signals. The two features constitute two-dimensional vectors, which are taken as inputs of a classifier designed by a support vector machine to identify the pulse repetition interval modulation of radar emitter signals automatically. Experimental results show that when the dimensions are lowered from 64 to 2, the extracted feature vector decreases the complexity of the classifier while maintaining or even enhancing the performances in recognition rate and noise suppression. Comparing to the original feature vector, the error rate of recognition of the extracted feature vector decreases from 0.15% - 0.25% to 0.00% for the samples without noises, and from 0.40% - 1.30% to0.15% - 0.93% for noised ones.
Keywords:recognition    radar signal    pulse repetition interval    support vector machine    frequency    pattern
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号