首页 | 本学科首页   官方微博 | 高级检索  
     

人工神经网络在路堤沉降预测中的应用
引用本文:张留俊 黄晓明 冯炜 王晓谋. 人工神经网络在路堤沉降预测中的应用[J]. 公路交通科技, 2006, 23(5): 7-10
作者姓名:张留俊 黄晓明 冯炜 王晓谋
作者单位:[1]东南大学,江苏南京210096 [2]中交第一公路勘察设计研究院,陕西西安710068 [3]天津市市政工程设计研究院,天津300051 [4]长安大学,陕西西安710064
摘    要:以人工神经网络法为主,研究了多因素条件下的沉降预测问题,同时与浅岗法和S型曲线法这2种在近几年推广应用的预测方法进行了对比。结果表明,3种方法预测的最终沉降大体相近,它们之间的区别在于人工神经网络法预测的沉降较大(同时更接近实测值);S型曲线法较小;浅岗法居中。由于神经网络是用实测数据直接建模,少了人为干扰因素,并且偏大的数值对工程来说是偏于安全的,所以选用人工神经网络预测沉降比较适宜。

关 键 词:软土地基 沉降预测 人工神经网络 浅岗法 S曲线
文章编号:1002-0268(2006)05-0007-04
收稿时间:2005-11-09
修稿时间:2005-11-09

Settlement Prediction of Embankment on Soft Ground by Using Artifical Neural Networks
ZHANG Liu-jun, HUANG Xiao-ming, FENG Wei, WANG Xiao-mou. Settlement Prediction of Embankment on Soft Ground by Using Artifical Neural Networks[J]. Journal of Highway and Transportation Research and Development, 2006, 23(5): 7-10
Authors:ZHANG Liu-jun   HUANG Xiao-ming   FENG Wei   WANG Xiao-mou
Abstract:The artifical neural networks(ANN) are studied as a main method for settlement prediction,compared with two other methods of Asaoka method and sigmoid curve method used in recent years.The study results indicate that the predicted final settlements with the three methods are consistent on the whole,and that there are differences among them with greater value for ANN(closer to actual settlement);smaller for sigmoid curve method;and Asaoka method in between.Since ANN builds the model directly from survey data and reduces the man-made effect,furthermore,the bigger prediction value is more safety in project,it is feasible to predict settlement with ANN.
Keywords:Softt ground   Settlement prediction   Artifical neural networks   Asaoka method   Sigmoid curve
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号