首页 | 本学科首页   官方微博 | 高级检索  
     

航班延误恢复调度的混合粒子群算法
引用本文:丁建立, 王新茹, 徐涛. 航班延误恢复调度的混合粒子群算法[J]. 交通运输工程学报, 2008, 8(2): 90-95.
作者姓名:丁建立  王新茹  徐涛
作者单位:中国民航大学 计算机科学与技术学院, 天津 300300
基金项目:国家高技术研究发展计划(863计划) , 国家自然科学基金 , 民航科研启动基金
摘    要:
为了优化航班延误恢复调度, 考虑了航班延误的经济效益、社会影响和经济损失构成, 定义了航线影响因子, 构建了一种新的航班延误恢复调度模型, 将局部搜索方法引入到粒子群算法中, 提出了求解航班延误恢复调度问题的混合粒子群算法。计算结果表明: 与先来先服务调度方法相比, 混合粒子群算法可以减少航班延误损失4.2%, 与基本粒子群算法和进化策略算法相比, 混合粒子群算法平均可减少航班延误损失2.0%, 随着航班延误恢复规模的增大, 算法优势会更明显。

关 键 词:空中交通管理   航班延误调度   混合粒子群算法   航线影响因子   局部搜索方法
文章编号:1671-1637(2008)02-0090-06
收稿时间:2007-08-21
修稿时间:2007-08-21

Hybrid particle swarm optimization arithmetic for recovery scheduling of flight delays
DING Jian-li, WANG Xin-ru, XU Tao. Hybrid particle swarm optimization arithmetic for recovery scheduling of flight delays[J]. Journal of Traffic and Transportation Engineering, 2008, 8(2): 90-95.
Authors:Ding Jian-li  Wang Xin-ru  Xu Tao
Affiliation:School of Computer Science and Technology, Civil Aviation University of China, Tianjin 300300, China
Abstract:
In order to optimize the recovery scheduling of flight delays,airline impact factors were defined,the economic benefit,social impact and loss constitution of flight delays were considered,a new recovery scheduling model of flight delays was created,a hybrid particle swarm optimization arithmetic(HPSOA)was put forward,and local search method was introduced into the arithmetic.Computation result shows that HPSOA can reduce the flight delay losses by 4.2% compared with first-come-first-serve(FCFS)strategy,and evenly reduce the flight delay losses by 2.0% compared with basic PSOA and evolutionary strategy(ES),so the advantage of HPSOA is more obvious with the increase of recovery scale in flight delays.8 tabs,3 figs,10 refs.
Keywords:air traffic management  scheduling of flight delay  hybrid particle swarm optimization arithmetic  airline impact factor  local search method
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号