BP神经网络收敛性问题的改进措施 |
| |
引用本文: | 贺清碧,周建丽. BP神经网络收敛性问题的改进措施[J]. 重庆交通大学学报(自然科学版), 2005, 24(1): 143-145 |
| |
作者姓名: | 贺清碧 周建丽 |
| |
作者单位: | 重庆交通学院,计算机及信息工程学院,重庆,400074;重庆交通学院,计算机及信息工程学院,重庆,400074 |
| |
摘 要: | BP算法现在已成为目前应用最广泛的神经网络学习算法,它在函数逼近、模式识别、分类、数据压缩等领域有着更加广泛的应用,但存在收敛较慢问题.笔者在文中简述了BP算法原理,针对BP算法的收敛性问题,提出了几点改进措施.
|
关 键 词: | BP神经网络 BP算法 收敛性 |
文章编号: | 1001-716X(2005)01-0143-03 |
修稿时间: | 2004-03-08 |
The convergence and improvements of BP neural network |
| |
Abstract: | The BP(back propagation) algorithm is a neural network learning algorithm, it is applied extensively in function approximation, mode distinguishing, classification, data compression et, but it has a question of convergence. In this paper, based on describing the principle of the BP algorithm, the convergence is discussed deeply, and several improvements to BP neural network are proposed. |
| |
Keywords: | BP neural network BP algorithm convergence |
本文献已被 万方数据 等数据库收录! |
|