首页 | 本学科首页   官方微博 | 高级检索  
     

模拟驾驶环境下驾驶人分心状态判别
作者姓名:张辉  钱大琳  邵春福  陈青民  单庆超
作者单位:1. 北京交通大学 城市交通复杂系统理论与技术教育部重点实验室, 北京 100044;2. 北京安信天行科技有限公司, 北京 100080
基金项目:国家重点研发计划项目(2017YFC0804800)
摘    要:为了探寻驾驶人分心判别方法,构建了驾驶人分心状态判别模型。首先设计分心模拟驾驶试验,采集正常驾驶和发送语音信息过程中的驾驶绩效特征和驾驶人眼动特征数据,建立驾驶人分心状态判别指标备选集;其次,采用基因选择算法对备选指标进行筛选,得到29个备选指标的重要度排序;然后,依次选取重要度较高的部分指标作为BP神经网络的输入指标,利用遗传算法(GA)全局搜索的性能优化BP神经网络的初始权值和阈值,将优化后的GA-BP神经网络作为弱分类器,再将多个弱分类器组合成Adaboost强分类器,建立基于Adaboost-GA-BP组合算法的驾驶人分心状态判别模型;最后,利用模拟驾驶器试验平台采集的数据计算不同判别指标数量下模型的性能,从而确定最优判别指标,并对模型进行验证和评价。结果表明:模型最优判别指标为重要度排序中前14个指标;模型能够准确识别驾驶人分心状态,判别精度为95.09%;与BP神经网络算法、GA-BP神经网络算法和Adaboost-BP神经网络算法相比,Adaboost-GA-BP组合算法在准确率、精准率、召回率、F1值和ROC曲线等模型性能方面均最优。建立的模型能够有效判别驾驶人分心状态,可为驾驶人分心预警系统和分心控制策略提供依据。

关 键 词:交通工程  驾驶人分心  基因选择算法  判别模型  Adaboost-GA-BP算法  
收稿时间:2017-09-21
本文献已被 CNKI 等数据库收录!
点击此处可从《中国公路学报》浏览原始摘要信息
点击此处可从《中国公路学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号