首页 | 本学科首页   官方微博 | 高级检索  
     

基于机器学习模型的建成环境对小汽车拥有行为的影响
引用本文:王晓全,邵春福,管岭,尹超英. 基于机器学习模型的建成环境对小汽车拥有行为的影响[J]. 交通运输系统工程与信息, 2020, 20(4): 173-177
作者姓名:王晓全  邵春福  管岭  尹超英
作者单位:北京交通大学 综合交通运输大数据应用技术交通运输行业重点实验室,北京 100044
基金项目:中央高校基本科研业务经费专项资金/The Fundamental Research Funds for the Central Universities
摘    要:为分析家庭小汽车拥有行为,同时考虑居住地和工作地建成环境的影响,构建梯度提升迭代决策树(GBDT)模型;分析社会经济属性,居住地、工作地建成环境属性对小汽车拥有行为的影响程度,并基于长春市居民出行调查数据进行实证研究.结果表明:3类影响因素中,社会经济属性对小汽车拥有行为的影响最大(58.95%);职住地建成环境属性均对家庭小汽车拥有行为具有显著影响,且居住地建成环境影响(23.77%)高于工作地建成环境(17.28%);职住地建成环境属性中,除居住地交叉口密度,工作地到中央商务区(CBD)距离及公共交通站点密度外,其他建成环境属性对小汽车拥有行为的影响均大于5%.因此,有必要同时优化职住地的建成环境来抑制小汽车拥有量的增长.

关 键 词:交通工程  职住地建成环境  小汽车拥有  影响程度  梯度提升迭代决策树  
收稿时间:2020-02-14

Exploring Influences of Built Environment on Car Ownership Based on a Machine Learning Method
WANG Xiao-quan,SHAO Chun-fu,GUAN Ling,YIN Chao-ying. Exploring Influences of Built Environment on Car Ownership Based on a Machine Learning Method[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(4): 173-177
Authors:WANG Xiao-quan  SHAO Chun-fu  GUAN Ling  YIN Chao-ying
Affiliation:Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China
Abstract:To analyze the car ownership behaviors, a gradient boosting decision tree (GBDT) method is employed to explore the effect sizes of residential and workplace built environments on car- ownership decisions. The empirical analysis is conducted based on the Changchun household travel survey data. The results show that the socio-economic factors contribute 58.95% to automobile ownership collectively and rank the first among the three categories of factors. The residential and workplace built environment variables are both associated with car ownership. And the residential built environment is more influential than the workplace built environment. Except for intersection density at residential locations, distance to the central business district(CBD), and bus stop density at workplace locations, all built environment variables have relative importance more than 5%. Therefore, it is of great importance for urban planners and policy makers to optimize the urban built environment to mitigate the increase of car ownership.
Keywords:traffic engineering  workplace built environment  car ownership  relative importance  gradient boosting decision tree  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号