首页 | 本学科首页   官方微博 | 高级检索  
     

智能网联环境下基于混合深度学习的交通流预测模型
作者姓名:陆文琦  芮一康  冉斌  谷远利
作者单位:1. 东南大学a. 交通学院,b. 东南大学-威斯康星大学智能网联交通联合研究院, c. 城市智能交通江苏省重点实验室,南京 211189;2. 北京交通大学综合交通运输大数据应用技术行业重点实验室,北京 100044
基金项目:国家自然科学基金;江苏省研究生科研与实践创新计划项目
摘    要:为适应未来智能网联环境下精细化交通流预测需求,提出一种基于混合深度学习 (Hybrid Deep Learning, HDL)的车道级交通流速度预测模型. 模型以智能网联系统强大的数据采集和计算能力为基础,采用集成经验模态分解算法将原始速度序列分解为多个固有模态函数分量和残差分量,并将所得分量重构为模型输入;利用双向长短期记忆神经网络和注意力机制,构建深度学习模型框架;为检验模型预测精度和可靠性,选择北京市二环路多个连续车道断面速度数据进行算法验证. 结果表明,HDL模型在不同车道均有理想的预测结果,单步和多步预测精度均显著优于对比模型.

关 键 词:智能交通  速度预测  混合深度学习  交通流  集成经验模态分解  
收稿时间:2020-02-18
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号