首页 | 本学科首页   官方微博 | 高级检索  
     

适用复杂劣化趋势的轨道不平顺鲁棒建模方法
引用本文:杨雅琴,徐鹏,李晔,孙全欣. 适用复杂劣化趋势的轨道不平顺鲁棒建模方法[J]. 交通运输系统工程与信息, 2020, 20(5): 156-162
作者姓名:杨雅琴  徐鹏  李晔  孙全欣
作者单位:1. 北京交通大学 交通运输学院,北京 100044;2. 中国铁路南昌局集团有限公司,南昌 330002
基金项目:中国国家铁路集团有限公司系统性重大项目-京张高铁智能运维技术研究/ The Science and Technology Research and Development Program of China Railway's“Intelligent Operation and Maintenance Technology for Beijing-Zhangjiakou HSR (P2018G051)”
摘    要:为准确描述各种条件下轨道不平顺复杂劣化过程,本文基于最小描述长度准则,建立一套动态检测数据驱动的轨道不平顺劣化自适应分段建模方法(Minimum-DescriptionLength-Based Rail Track Deterioration Adaptive Segmentation Framework, MDL-RTDAS),将维修作业导致轨道状态劣化过程突变的识别问题转化为模型选择问题,并设计求解算法.根据昌福高速铁路下行方向 K21+184~K220+308 路段近 5 年的历史动态检测数据,验证 MDLRTDAS 的有效性;从识别准确度,模型拟合的残差和容忍检测数据异常干扰方面验证了 MDL-RTDAS 优于同类模型. 结果表明:在缺乏完整、准确维修作业信息的情况下,MDLRTDAS能够克服检测数据异常的干扰,感知劣化趋势变化,自动识别出维修作业造成的轨道不平顺劣化趋势突变,将劣化过程准确分段;相比于同类模型,MDL-RTDAS能更精确、有效地实现轨道不平顺劣化过程的自适应分段建模.

关 键 词:铁路运输  轨道不平顺  劣化建模  最小描述长度  鲁棒建模  
收稿时间:2020-05-20

Robust Modeling Method for Track Irregularity of Complicated Deterioration Trend
YANG Ya-qin,XU Peng,LI Ye,SUN Quan-xin. Robust Modeling Method for Track Irregularity of Complicated Deterioration Trend[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(5): 156-162
Authors:YANG Ya-qin  XU Peng  LI Ye  SUN Quan-xin
Affiliation:1. School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China; 2. China Railway Nanchang Group Co., Ltd., Nanchang 330002, China
Abstract:To precisely describe the complicated track irregularity deterioration under the varying circumstances, this paper proposes a rail track deterioration adaptive segmentation framework based on minimum description length principle, referred as MDL-RTDAS. In MDL-RTDAS, the identification of the maintenance activities that result inmutations in the deterioration process is reformulated as a model selection problem. The algorithm is also proposed to solve the models. The effectiveness of MDL- RTDAS is verified by using the recent five years measurement data from the mileage K21+184 to K220+30 on Nanchang-Fuzhou railway. The MDL-RTDAS is compared with other similar algorithms in the accuracy, fitness and robustness. As the results indicate, under the conditions that the information of maintenance operations is incomplete and inaccurate, MDL-RTDAS is able to overcome the interference of contaminated measurements, precisely identify the mutations in deterioration rate caused by maintenance activities, and create a piecewise fitting model for track irregularity deterioration. Compared to other algorithms, MDL- RTDAS owns better performances in rail track deterioration adaptive segmentation.To precisely describe the complicated track irregularity deterioration under the varying circumstances, this paper proposes a rail track deterioration adaptive segmentation framework based on minimum description length principle, referred as MDL-RTDAS. In MDL-RTDAS, the identification of the maintenance activities that result inmutations in the deterioration process is reformulated as a model selection problem. The algorithm is also proposed to solve the models. The effectiveness of MDL- RTDAS is verified by using the recent five years measurement data from the mileage K21+184 to K220+30 on Nanchang-Fuzhou railway. The MDL-RTDAS is compared with other similar algorithms in the accuracy, fitness and robustness. As the results indicate, under the conditions that the information of maintenance operations is incomplete and inaccurate, MDL-RTDAS is able to overcome the interference of contaminated measurements, precisely identify the mutations in deterioration rate caused by maintenance activities, and create a piecewise fitting model for track irregularity deterioration. Compared to other algorithms, MDL- RTDAS owns better performances in rail track deterioration adaptive segmentation.
Keywords:railway transportation  track irregularity  model of deterioration  minimum description length  robust modeling  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号