首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Driving behaviour models enabling the simulation of Advanced Driving Assistance Systems: revisiting the Action Point paradigm
Institution:1. Department of Transport and Planning, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, P.O. Box 5048, Delft 2600 GA, The Netherlands;2. Transportation Research Institute, Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, 711 Rabin Building, Haifa 32000, Israel
Abstract:In the field of Intelligent Transportation Systems (ITS), one of the most promising sub-functions is that of Advanced Driver Assistance Systems (ADAS). Development of an effective ADAS, and one that is able to gain drivers’ acceptance, hinges on the development of a human-like car-following model, and this is particularly important in order to ensure the driver is always ‘in the (vehicle control) loop’ and is able to recover control safely in any situation where the ADAS may release control. One of the most commonly used models of car-following is that of the Action Point (AP) (psychophysical) paradigm. However, while this is widely used in both micro-simulation models and behavioural research, the approach is not without its weaknesses. One of these, the potential redundancy of some of the identified APs, is examined in this paper and its basic structure validated using microscopic driving behaviour collected on thirteen subjects in Italy. Another weakness in practical application of the Action Point theory is the identification of appropriate thresholds, accounting for the perception, reaction and adjustment of relative speed (or spacing) from the leading vehicle. This article shows that this identification is problematic if the Action Point paradigm is analysed in a traditional way (car-following spirals), while it is easier if the phenomenon is analysed in terms of car-following ‘waves’, related to Time To Collision (TTC) or the inverse of TTC. Within this new interpretative framework, the observed action points can be observed to follow a characteristically linear pattern. The identification of the most significant variables to be taken into account, and their characterisation by means of a simple linear pattern, allows for the formulation of more efficient real-time applications, thereby contributing to the development and diffusion of emerging on-board technologies in the field of vehicle control and driver’s assistance.
Keywords:Driving behaviour  ADAS  Car-following  Microscopic  Action Point theory  ITS  Instrumented Vehicle
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号