首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Assessing appropriate stiffness levels for spudcan foundations on dense sand
Authors:Mark J Cassidy  George Vlahos  Mathew Hodder
Institution:1. Centre for Offshore Foundation Systems, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia;2. Vibropile (Aust) Pty Ltd, Melbourne, Australia
Abstract:Before a jack-up can operate at a given location, a site-specific assessment of its ability to withstand a design storm during operation must be performed. During this assessment, the complex state of stress and strain under a spudcan is usually simplified to a value of foundation stiffness that is integrated as a boundary condition into the structural analysis. Soil stiffness is a critical parameter affecting the foundation and structural load distribution and displacements, and the jack-up natural period and dynamic response. The level of spudcan stiffness is an area of intense interest and debate. This paper assesses appropriate stiffness levels for numerical simulation. Utilising results from a detailed “pushover” experiment of a three-legged model jack-up on dense sand, the paper compares the experimental pushover loads and displacements on the hull and spudcans to numerical simulations using different assumptions of spudcan stiffness. These include pinned and encastré footings, linear springs and a force-resultant model based on displacement-hardening plasticity theory. Constant stiffness levels are shown to be inadequate in simulating the experimental pushover test. The non-linear degradation of stiffness associated with the latter force-resultant model is critical.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号