首页 | 本学科首页   官方微博 | 高级检索  
     

山区双车道公路机动车碰撞事故严重度致因比较分析与预测
引用本文:杨文臣,谢碧珊,房锐,秦雅琴. 山区双车道公路机动车碰撞事故严重度致因比较分析与预测[J]. 交通运输系统工程与信息, 2021, 21(1): 190-195. DOI: 10.16097/j.cnki.1009-6744.2021.01.029
作者姓名:杨文臣  谢碧珊  房锐  秦雅琴
作者单位:1. 云南省交通规划设计研究院有限公司,陆地交通气象灾害防治技术国家工程实验室,昆明 650200; 2. 昆明理工大学,交通工程学院,昆明 650504
基金项目:国家重点研发计划项目/National Key Research and Development Program of China(2017YFC0803906);云南省基础研究计划项目/Yunnan Fundamental Research Projects(2019FB072);国家自然科学基金/National Natural Science Foundation of China(71861016)。
摘    要:以云南山区双车道公路1740起碰撞事故数据为基础,将事故数据分为机动车与机动车、机动车与摩托车、机动车与非机动车3种类型,事故严重度划分为仅财产损失、轻伤、重伤或死亡事故3个等级,分别用部分优势比模型和有序Logit模型建立3类机动车碰撞事故严重度分析模型,对比分析不同等级事故的显著影响因素和模型的预测准确率,分析部分...

关 键 词:交通工程  事故严重度  部分优势比模型  山区双车道公路  边际效应分析  机动车碰撞
收稿时间:2020-08-18

Comparative Analysis and Prediction of Motor Vehicle Crash Severity on Mountainous Two-lane Highways
YANG Wen-chen,XIE Bi-shan,FANG Rui,QIN Ya-qin. Comparative Analysis and Prediction of Motor Vehicle Crash Severity on Mountainous Two-lane Highways[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(1): 190-195. DOI: 10.16097/j.cnki.1009-6744.2021.01.029
Authors:YANG Wen-chen  XIE Bi-shan  FANG Rui  QIN Ya-qin
Affiliation:1. National Engineering Laboratory for Surface Transportation Weather Impacts Prevention, Broadvision Engineering Consdultants Co. Ltd, Kunming 650200, China; 2. Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming 650504, China
Abstract:This paper developed the motor vehicle crash severity prediction models on mountainous two-lane highways using the partial proportional odds model and the ordered Logit model. Based on 1740 cases of motor vehicle crashes in Yunnan province, the crash data was classified as motor vehicle and motor vehicle crash, motor vehicle and motorcycle crash, motor and non- motorized vehicle crash. The accident severity was classified as property damage only, minor injuries, and serious injuries or fatal. The comparative analysis of the significant factors and the model prediction accuracy relevant to each severity grade was carried out. The marginal effect analysis was also performed to investigate significant variables of the partial proportional odds model. The results show that the impact factors for different accident severity are significantly different for different vehicle types. Compared to the ordered Logit model, the partial proportional odds model could be used to find the hidden variables that are not following the proportional odds assumption. The average prediction accuracy using the partial proportional odds model are respectively 78.29%, 73.63% and 72.04% for motor vehicle and motor vehicle crash, motor vehicle and motorcycle crash, and motor and non-motorized vehicle crash. The accuracy is respectively improved by 14.54%, 5.65% and 3.32% compared to the ordered Logit model. The study provides references for highway safety administrations to proactively prevent accidents and reduce risks.
Keywords:traffic engineering  crash severity  partial proportional odds model  mountainous two-lane highway  marginal effect analysis  motor vehicle crash  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号