首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进密度聚类算法的交通事故地点聚类研究
引用本文:黄钢,瞿伟斌,许卉莹. 基于改进密度聚类算法的交通事故地点聚类研究[J]. 交通运输系统工程与信息, 2021, 20(5): 169-176
作者姓名:黄钢  瞿伟斌  许卉莹
作者单位:公安部交通管理科学研究所 道路交通安全公安部重点实验室,江苏 无锡 214151
基金项目:公安部科技强警基础工作专项项目/Fundamental Research Funds for Basic Work of Strengthening the Police by Science and Technology of the Ministry of Public Security(2019GABJC24);中央级公益性科研院所基本科研业务费专项资金/ Fundamental Research Funds for Central Public Welfare Research Institute(2020SJA01).
摘    要:交通事故特征受地域分布影响显著,本文对交通事故特征进行优化聚类研究.基于 2019年无锡市交通事故数据,调用开放地图接口地理编码解算事故地点经纬度,使用密度聚类算法对事故地点与事故原因进行密度聚类.传统的密度聚类算法依赖距离阈值和样本数阈值的准确输入,为解决这一局限,建立一种自适应搜索距离阈值和样本数阈值的密度聚类模型,并与原始聚类模型进行对比.结果表明,优化算法在参数确定上更加智能,对簇的划分更加准确,对噪声点的识别更加合理.通过机器学习中轮廓系数计算方法计算模型得分,证明了该算法在城市道路交通事故地理位置聚类中的适用性.

关 键 词:城市交通  交通安全  地理编码  密度聚类  轮廓系数  
收稿时间:2020-05-30

Traffic Accident Location Clustering Based on Improved DBSCAN Algorithm
HUANG Gang,QU Wei-bin,XU Hui-ying. Traffic Accident Location Clustering Based on Improved DBSCAN Algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 20(5): 169-176
Authors:HUANG Gang  QU Wei-bin  XU Hui-ying
Affiliation:Key Laboratory of Ministry of Public Security for Road Traffic Safety, Traffic Management Research Institute of the Ministry of Public Security, Wuxi 214151, Jiangsu, China
Abstract:Traffic accident characteristics are significantly affected by regional distribution. In this paper, traffic accident characteristics are clustered by the optimized density- based spatial clustering of applications with noise (DBSCAN) clustering method. The 2019 traffic accident data in Wuxi, China is used as a case study. The open map API is used to obtain the longitude and latitude of the accident location as an input for the proposed method. The traditional DBSCAN clustering algorithm normally requires accurate input of the distance threshold and sample number threshold. This paper develops the DBSCAN clustering model with an adaptive search distance threshold and sample number threshold. The comparison results of the proposed algorithm with traditional algorithm show that the optimized algorithm is more intelligent in determining parameters and more accurate in dividing clusters; the recognition of noise points is more reasonable than the traditional algorithm. The applicability of the algorithm in the geographical location clustering for urban road traffic accidents is proved by calculating the model score of the silhouette coefficient in machine learning.
Keywords:urban traffic  traffic safety  geocoding  density clustering  silhouette coefficient  
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号