首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的公交客流预测
引用本文:姜平,黄志鹏. 基于神经网络的公交客流预测[J]. 交通标准化, 2008, 0(23): 28-31
作者姓名:姜平  黄志鹏
作者单位:合肥工业大学机械与汽车工程学院,安徽合肥230009
基金项目:合肥工业大学校基金资助(080205F)
摘    要:
公交客流量具有动态性,受多种因素的影响,不能或无法用精确的数学模型进行预测。通过对公交客流量预测的Elman和BP神经网络的建立、学习和训练。并以前三年的公交客流量、国内生产总值、工业总产值、城市人口数作为两种神经网络的输入神经元,第四年的公交客流量作为输出神经元,同时以合肥市公交客流量为例进行分析,结果表明:所建的Elman模型比EBP模型的预测精度高,效果好。

关 键 词:神经网络  客流量预测  Elman算法

Forecast of Common Traffic Passenger Volume Based on Neural Network
JIANG Ping,HUANG Zhi-peng. Forecast of Common Traffic Passenger Volume Based on Neural Network[J]. Communications Standardization, 2008, 0(23): 28-31
Authors:JIANG Ping  HUANG Zhi-peng
Affiliation:(School of Machinery and Automobile Engineering, Hefei University of Technology, Hefei 230009, China)
Abstract:
Common traffic passenger volume is dynamic, influenced by multiple factors and is usually unable to be described with accurate mathematical models. BP network and Elman network of passenger volume are built, learned and trained. The common traffic passenger volume, GDP and urban population of the first three years are the input nerve cells of both neural networks, then output the fourth year's common traffic passenger volume. A forecast of passenger volume of Hefei is analyzed. The results show that the established Elan model is superior to BP model in forecast accuracy and effect.
Keywords:neural network  volume prediction  Elman
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号