首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络的隧道渗漏水等级评定模型研究
引用本文:李倩囡,唐爱玲,吴剑,黄涛,潘海泽. 基于BP神经网络的隧道渗漏水等级评定模型研究[J]. 隧道建设, 2009, 29(6): 633-635,657
作者姓名:李倩囡  唐爱玲  吴剑  黄涛  潘海泽
作者单位:西南交通大学环境科学与工程学院,成都,610031
基金项目:铁道部科技研究开发课题,留学回国人员科研启动基金资助项目,国家大学生创新基金资助项目 
摘    要:
由于隧道渗漏水的普遍性和严重危害性,隧道渗漏水已成为隧道工程建设和维护的一大关键课题。针对我国隧道渗漏水的现状,通过综合分析影响隧道渗漏水的各种因素,找出影响隧道渗漏水的主要因素,提出包括隧道设计施工因素、防排水工程措施、围岩及地下水情况、自然地理情况4个一级指标共10个因素的评价指标集,构建基于BP神经网络的评价模型,并验证该模型的可靠性。该方法为进一步提高隧道渗漏水等级评价的精确度提供新的思路。

关 键 词:BP神经网络  隧道  渗漏水  灾害等级
收稿时间:2009-05-20
修稿时间:2009-11-23

Study on Evaluation Model for Water Leakage Grades of Tunnels Based on BP Neural Network
LI Qiannan,TANG Ailing,WU Jian,HUANG Tao,PAN Haize. Study on Evaluation Model for Water Leakage Grades of Tunnels Based on BP Neural Network[J]. Tunnel Construction, 2009, 29(6): 633-635,657
Authors:LI Qiannan  TANG Ailing  WU Jian  HUANG Tao  PAN Haize
Affiliation:School of environmental science &;|engineering, Southwest Jiaotong University, Chengdu 610031, China
Abstract:
Water leakage of tunnels is very popular and has serious adverse effect, therefore it has become one of the critical issues in the construction and maintenance of tunnels. Regarding the status of the water leakage of tunnels in China, the authors identify the main factors that influence the water leakage of tunnels by comprehensively analyzing the factors. The authors propose an evaluation index system consisting of 4 Grade I indexes (i.e., tunnel design and construction index, waterproofing and drainage index, surrounding rock mass and groundwater index and physical geography index), which include 10 factors. In addition, they establish an evaluation model based on BP neural network and verify the reliability of this model. This method offers a new way to improve the evaluation precision of the water leakage of tunnels.
Keywords:BP neural network  tunnel  water leakage  disaster grade
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《隧道建设》浏览原始摘要信息
点击此处可从《隧道建设》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号