首页 | 本学科首页   官方微博 | 高级检索  
     

����SVM�ij��п���·�г�ʱ��Ԥ���о�
作者姓名:张娟  孙剑
作者单位:????? ??·???????????????????????? 201804
摘    要:随着城市快速路交通信息采集系统的发展,特别是视频车牌采集系统的应用,使实时动态获得快速路行程时间成为可能,同时也促进了高精度行程时间预测的理论研究和实际应用需求. 本文基于快速路车牌识别数据检测的海量历史时间序列数据,选择预测时段的前4个时段的数据作为输入特征值,以遗传算法建立模型参数优化算法,得到训练模型及其参数,从而实现车辆行程时间的动态预测. 最后以上海市快速路系统中的三个典型路段的实测数据进行实例分析. 结果表明:与传统的指数平滑法、多元回归法、ARIMA法预测结果对比,基于SVM的预测路段平均绝对百分误差在5%以内,希尔不等系数非常接近0,SVM模型显示了更高的预测精度.

关 键 词:???????  ?г???????  ?????????  ???п???·  
收稿时间:2010-12-15
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号