首页 | 本学科首页   官方微博 | 高级检索  
     

轴辐式应急救援网络规划
引用本文:马昌喜, 石褚巍, 杜波. 轴辐式应急救援网络规划[J]. 交通运输工程学报, 2023, 23(3): 198-208. doi: 10.19818/j.cnki.1671-1637.2023.03.015
作者姓名:马昌喜  石褚巍  杜波
作者单位:1.兰州交通大学 交通运输学院,甘肃 兰州 730070;;2.兰州交通大学 高原铁路运输智慧管控铁路行业重点实验室,甘肃 兰州 730070;;3.兰州财经大学 信息工程学院,甘肃 兰州 730020;;4.伍伦贡大学 智能基础设施研究中心,新南威尔士 伍伦贡 2522
基金项目:国家自然科学基金项目52062027 甘肃省"双一流"科研重点项目GSSYLXM-04 兰州财经大学科研项目Lzufe2020D-003 甘肃省基础研究计划22JR4ZA035 甘肃省省级科技计划项目22ZD6GA010 兰州交通大学基础拔尖计划项目2022JC02
摘    要:
为了实现对受灾城市的快速支援,同时尽可能降低应急救援网络的建设成本,以应急救援站选址和应急救援通道布局为落脚点,研究了三级轴辐式应急救援网络的多目标规划方法;考虑轴辐式网络的多级结构及应急救援站间的连通关系特征,以三级应急救援站选址、应急救援站间的连通关系及应急救援通道等级为决策变量,以各级应急救援站的建设成本和网络平均救援时间最小为双目标函数,构建三级轴辐式应急救援网络规划模型;结合决策变量的特征为三级轴辐式应急救援网络规划模型设计了三段式编码结构的小生境Pareto遗传算法;依托甘肃省14个城市的公路网络进行应急救援网络的建模求解,验证方法的有效性,并将优化结果与传统三级应急救援网络进行了对比。研究结果表明:三段式编码结构的小生境Pareto遗传算法能够有效求解该轴辐式应急救援网络规划模型;与传统应急救援网络模型的最优解相比,选取的Pareto解方案可使三级轴辐式应急救援网络在应急救援站的建设成本上降低8.3%,在网络平均救援时间上加快了3.5 h,其优化结果可支配传统应急救援网络的最优解。
可见,提出的三级轴辐式应急救援网络规划方法能够兼顾轴辐式网络的集约特性,同时取得更短的应急救援时间。


关 键 词:交通规划   轴辐式应急救援网络   多目标规划   应急救援站   应急救援通道   平均救援时间   小生境Pareto遗传算法
收稿时间:2022-12-19

Hub-and-spoke emergency rescue network planning
MA Chang-xi, SHI Chu-wei, DU Bo. Hub-and-spoke emergency rescue network planning[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 198-208. doi: 10.19818/j.cnki.1671-1637.2023.03.015
Authors:MA Chang-xi  SHI Chu-wei  DU Bo
Affiliation:1. School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China;;2. Key Laboratory of Railway lndustry on Plateau Railway Transportation Intelligent Management and Control, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China;;3. School of Information Engineering, Lanzhou University of Finance and Economics, Lanzhou 730020, Gansu, China;;4. SMART Infrastructure Facility, University of Wollongong, Wollongong 2522, New South Wales, Australia
Abstract:
In order to achieve the rapid rescue of disaster-stricken cities and simultaneously reduce the construction cost of emergency rescue networks as much as possible, the multi-objective planning method of the three-level hub-and-spoke emergency rescue network was studied by taking the locations of emergency rescue stations and the layout of emergency rescue channels as the foothold. The multi-level structure of the hub-and-spoke network and the characteristics of connection relationship between emergency rescue stations were considered, the locations of three-level emergency rescue stations, the connection relationship between emergency rescue stations, and the level of emergency rescue channels were taken as decision variables, the minimum construction cost of emergency rescue stations at all levels and the minimum average network rescue time were taken as the two objective functions, a three-level hub-and-spoke emergency rescue network planning model was bulit. The niche Pareto genetic algorithm with a three-segment encoding structure for the three-level hub-and-spoke emergency rescue network planning model was designed by combining the characteristics of the decision variables. The emergency rescue network was modelled and solved based on the road network of 14 cities in Gansu Province. The effectiveness of the method was verified, and the optimization results were compared with the traditional three-level emergency rescue network. Research results show that the niche Pareto genetic algorithm with a three-segment encoding structure can effectively solve the hub-and-spoke emergency rescue network planning model.
Compared with the optimal solution of the traditional emergency rescue network model, the selected scheme of the Pareto solution in the three-level hub-and-spoke emergency rescue network can reduce the construction cost of emergency rescue stations by 8.3%, and accelerate the average network rescue time by 3.5 h. The optimization results can dominate the optimal solution of the traditional emergency rescue network. So, the proposed three-level hub-and-spoke emergency rescue network planning method can take into account the intensive characteristics of hub-and-spoke networks and achieve shorter emergency rescue time.
Keywords:transportation planning  hub-and-spoke emergency rescue network  multi-objective planning  emergency rescue station  emergency rescue channel  average rescue time  niche Pareto genetic algorithm
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号