首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络的复杂布局管道泄漏检测研究
引用本文:阳子轩,范世东,江攀,熊庭. 基于BP神经网络的复杂布局管道泄漏检测研究[J]. 武汉造船, 2012, 0(1): 66-69
作者姓名:阳子轩  范世东  江攀  熊庭
作者单位:武汉理工大学能源与动力工程学院,武汉430063
摘    要:对基于BP神经网络的复杂布局管道泄漏检测与定位进行研究,确定实验方案和研究内容,介绍BP神经网络的输入参数、训练目标和隐含层节点个数,阐述基于BP神经网络的复杂管道泄漏检测研究。研究表明:用BP神经网络来预测复杂管道发生泄漏后的泄漏量大小是完全可行的;用其对是否发生泄漏进行状态辨识,则还要进行数据的二次处理;由于训练样本过少,用BP网络进行泄漏定位时会产生较大的误差,建议增加训练样本数,从而提高泄漏定位精度。

关 键 词:BP神经网络  复杂管道  泄漏检测

Research on Complicated Pipeline Leakage Detection Based on BP Neural Network
YANG Zi-xuan,FAN Shi-dong,JIANG Pan,XIONG Ting. Research on Complicated Pipeline Leakage Detection Based on BP Neural Network[J]. Wuhan Shipbuilding, 2012, 0(1): 66-69
Authors:YANG Zi-xuan  FAN Shi-dong  JIANG Pan  XIONG Ting
Affiliation:( School of Energy and Power Engineering, Wuhan University of Technology, Wuhan 430063, China)
Abstract:The leakage detection and location of complicate pipeline was studies based on BP neural network. After defining the experimental program and research content, the input parameters, training objective and the number of hidden nodes of BP neural network were introduced. The research showed that it is feasible to predict the leakage in the complicated pipeline. When use BP neural network to identify if there have leakage in the pipeline, the data needs to be secondary processed. As training sample is few, it may causes deviation in the leakage location. But increasing the number of training sample could improve the leakage location accuracy.
Keywords:BP neural network  complicated pipeline  leakage detection
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号