首页 | 本学科首页   官方微博 | 高级检索  
     


Capturing correlation with a mixed recursive logit model for activity-travel scheduling
Affiliation:1. Transport and Mobility Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Switzerland;2. Department of Urban Engineering, The University of Tokyo, Japan;3. Department of Civil Engineering, The University of Tokyo, Japan
Abstract:Representing activity-travel scheduling decisions as path choices in a time–space network is an emerging approach in the literature. In this paper, we model choices of activity, location, timing and transport mode using such an approach and seek to estimate utility parameters of recursive logit models. Relaxing the independence from irrelevant alternatives (IIA) property of the logit model in this setting raises a number of challenges. First, overlap in the network may not fully characterize perceptual correlation between paths, due to their interpretation as activity schedules. Second, the large number of states that are needed to represent all possible locations, times and activity combinations imposes major computational challenges to estimate the model. We combine recent methodological developments to build on previous work by Blom Västberg et al. (2016) and allow to model complex and realistic correlation patterns in this type of network. We use sampled choices sets in order to estimate a mixed recursive logit model in reasonable time for large-scale, dense time-space networks. Importantly, the model retains the advantage of fast predictions without sampling choice sets. In addition to estimation results, we present an extensive empirical analysis which highlights the different substitution patterns when the IIA property is relaxed, and a cross-validation study which confirms improved out-of-sample fit.
Keywords:Travel demand modeling  Activity-travel scheduling  Mixed recursive logit  Activity network  Mode choice
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号