首页 | 本学科首页   官方微博 | 高级检索  
     

基于交通因子状态网络的城市交叉口交通流预测
引用本文:张伟斌,张帅,郭海锋,冯姚瑶. 基于交通因子状态网络的城市交叉口交通流预测[J]. 中国公路学报, 2021, 34(12): 217-228. DOI: 10.19721/j.cnki.1001-7372.2021.12.016
作者姓名:张伟斌  张帅  郭海锋  冯姚瑶
作者单位:1. 南京理工大学 电子工程与光电技术学院, 江苏 南京 210094;2. 浙江工业大学 信息工程学院, 浙江 杭州 310014
基金项目:国家自然科学基金项目(71971116,52072343);浙江省自然科学基金项目(LY20E080023)
摘    要:
信息技术的快速发展,为交通研究和城市交通管理提供了大规模、多样化的数据资源,并为城市交通状态估计和交通流预测方法的研究提供了有力支持.将城市交叉口视为一个微观交通系统,采用数据驱动与领域知识结合的方式,建立微观层次的交通因子状态网络模型(Traffic Factor State Network,TFSN),考察交通因素...

关 键 词:交通工程  交通流预测  EM算法  交通因子状态网络模型  高阶多元马尔可夫链  聚类性能指标
收稿时间:2021-01-26

Traffic Flow Prediction of Urban Intersections Based on a Traffic Factor State Network
ZHANG Wei-bin,ZHANG Shuai,GUO Hai-feng,FENG Yao-yao. Traffic Flow Prediction of Urban Intersections Based on a Traffic Factor State Network[J]. China Journal of Highway and Transport, 2021, 34(12): 217-228. DOI: 10.19721/j.cnki.1001-7372.2021.12.016
Authors:ZHANG Wei-bin  ZHANG Shuai  GUO Hai-feng  FENG Yao-yao
Affiliation:1. School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China;2. College of Information and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
Abstract:
The rapid development of information technology provides diversified and large-scale traffic data resources for traffic research and urban traffic management, as well as strong support for research on urban intersection traffic state estimation and traffic flow prediction methods. In this study, urban intersections were regarded as a microscopic transportation system, and a combination of data-driven methods and domain knowledge was used to establish a microscopic traffic factor state network (TFSN) model to examine the correlation between traffic factors and consider environmental factors. Combined with the influence of traffic factors and environmental impact factors, this model estimated the traffic state corresponding to environmental impact factors through cluster analysis of traffic flow data and verified the physical significance and corresponding relationship of the traffic state with the actual traffic flow state through a real-world case. Furthermore, based on the traffic flow data of different traffic states, a high-order multivariate Markov chain was established to predict the traffic flow, and the prediction accuracy of the model was improved by clustering the performance index of the traffic flow time series. By analyzing the strength of the Markov property of the data, and the relationship between the order and the prediction accuracy of the Markov model, it was concluded that the prediction accuracy of the Markov model can be improved by reasonably choosing the order of the Markov model. The results show that the average absolute percentage error of the direct prediction of the original traffic flow data is 24.61%, while the average absolute percentage error of the traffic flow prediction under different traffic states is 16.99%, which represents a reduction of 7.62%. This verifies the effectiveness and availability of the proposed microscopic traffic factor state network.
Keywords:traffic engineering  traffic flow prediction  EM algorithm  TFSN  high-order multivariate Markov chain  clustering performance index  
点击此处可从《中国公路学报》浏览原始摘要信息
点击此处可从《中国公路学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号