首页 | 本学科首页   官方微博 | 高级检索  
     

断层破碎带内隧道纵向受荷特征和变形分析
引用本文:颉永斌,董建华. 断层破碎带内隧道纵向受荷特征和变形分析[J]. 中国公路学报, 2021, 34(11): 211-224. DOI: 10.19721/j.cnki.1001-7372.2021.11.017
作者姓名:颉永斌  董建华
作者单位:1. 兰州理工大学 甘肃省土木工程防灾减灾重点实验室, 甘肃 兰州 730050;2. 兰州理工大学 西部土木工程防灾减灾教育部工程研究中心, 甘肃 兰州 730050
基金项目:国家自然科学基金项目(51778275);中央引导地方科技发展资金项目;甘肃省基础研究创新群体项目(20JR10RA205);陇原青年创新创业人才(团队项目)(2020RCXM120);甘肃省知识产权局高价值专利培育和转化项目(20ZSCQ034);兰州市十大科技创新项目(2020-2-11)
摘    要:
为了探究断层破碎带处隧道沿纵向的变形和受力特征,首先基于筒仓理论和地层应力分布特征,考虑断层破碎带的几何特征和围岩特性,建立了断层破碎带内隧道纵向荷载简化计算模型,并利用应力传递原理进行了求解;其次将隧道简化为破碎带纵向荷载作用下的弹性地基梁,利用有限差分理论计算了破碎带纵向荷载作用下的隧道变形和受力特征。开展了相应的数值模拟和室内模型试验,结合试验数据和数值计算结果对理论模型进行了验证,并分析了埋深、破碎带宽度和倾角变化对隧道纵向变形和受力的影响。结果表明:①埋深越大,破碎带内纵向荷载越大,但纵向荷载的增长速率越小,隧道在上下盘与破碎带交界面附近的剪力和弯矩差值越小;②破碎带宽度越大,纵向荷载整体越大,隧道在上下盘与破碎带交界面附近的剪力和弯矩差值越大,最大变形位置越接近于下盘和破碎带交界面;③破碎带倾角越大,纵向荷载越接近于均布,上下盘和破碎带交界面附近变形和受力越趋于对称。

关 键 词:隧道工程  断层破碎带  模型试验  纵向变形  应力传递原理  数值模拟  
收稿时间:2020-11-09

Analysis of Longitudinal Deformation and Stress Characteristics of Tunnel Crossing Fault Fracture Zone
XIE Yong-bin,DONG Jian-hua. Analysis of Longitudinal Deformation and Stress Characteristics of Tunnel Crossing Fault Fracture Zone[J]. China Journal of Highway and Transport, 2021, 34(11): 211-224. DOI: 10.19721/j.cnki.1001-7372.2021.11.017
Authors:XIE Yong-bin  DONG Jian-hua
Affiliation:1. Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, Gansu, China;2. Western Engineering Research Center of Disaster Mitigation in Civil Engineering of Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
Abstract:
To explore the longitudinal deformation and stress characteristics of the tunnel in the fault fracture zone, on the basis of considering the geometric characteristics and surrounding rock characteristics of the fault fracture zone, combining the silo theory and stratum stress distribution characteristics, a simplified calculation model of the longitudinal load of the tunnel in the fracture zone was established and solved by stress transfer principle. Secondly, the tunnel was simplified as an elastic foundation beam under longitudinal load of fracture zone, and the deformation and stress characteristics of tunnel under the longitudinal load were calculated by finite difference theory. Finally, the corresponding numerical simulation and model test were carried out, and the theoretical model was verified by combining experimental data and numerical calculation results, the influence of the buried depth, width and inclination angle on the deformation and stress of the tunnel were analyzed. The results show that:① the greater the buried depth is, the greater the longitudinal load in the fracture zone is, but the smaller the growth rate of the longitudinal load is, the smaller the difference of shear force and bending moment near the interface between the upper and lower side walls and the fracture zone is; ② the larger the width of the fracture zone is, the greater the longitudinal load is, and the greater the difference of shear force and bending moment near the interface between the upper and lower side walls and the fracture zone is, and the closer the maximum deformation position is to the interface between the lower side walls and the fracture zone; ③ the larger the inclination angle of fracture zone is, the closer the longitudinal load is to uniform distribution, the deformation and stress near the interface between the upper and lower side walls and fracture zone tend to be symmetrical.
Keywords:tunnel engineering  fault fracture zone  model test  longitudinal deformation  stress transfer principle  numerical simulation  
点击此处可从《中国公路学报》浏览原始摘要信息
点击此处可从《中国公路学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号