首页 | 本学科首页   官方微博 | 高级检索  
     

基于加权Kendall相关系数和序贯代理模型的有限元模型修正
引用本文:梁鹏,赵云鹏,邬刚柔,叶春生,王树东,李洪宇,王康迪. 基于加权Kendall相关系数和序贯代理模型的有限元模型修正[J]. 中国公路学报, 2021, 34(12): 57-67. DOI: 10.19721/j.cnki.1001-7372.2021.12.005
作者姓名:梁鹏  赵云鹏  邬刚柔  叶春生  王树东  李洪宇  王康迪
作者单位:1. 长安大学 公路学院, 陕西 西安 710064;2. 长安大学 公路大型结构安全教育部工程研究中心, 陕西 西安 710064;3. 中国公路工程咨询集团有限公司, 北京 100097;4. 中铁建重庆投资集团有限公司, 重庆 402760
基金项目:国家自然科学基金项目(51878059);国家重点专项项目(2019YFB1600702);中央高校基本科研业务费专项资金项目(300102218406,300102219202)
摘    要:为了提高桥梁结构有限元模型修正的效率和效果,提出基于加权Kendall相关系数和序贯代理模型的有限元模型修正方法.首先,建立基于目标响应误差和待修正设计参数灵敏度的加权Kendall相关系数指标,并采用凝聚层次聚类算法,合理确定待修正设计参数的数量和位置,保证待修正设计参数对目标响应具有合适的解耦能力;其次,为解决传统...

关 键 词:桥梁工程  有限元模型修正  Kendall相关系数  序贯代理模型  层次聚类
收稿时间:2020-01-04

FEM Updating Based on Weighted Kendall Correlation Coefficient and Sequential Surrogate Model
LIANG Peng,ZHAO Yun-peng,WU Gang-rou,YE Chun-sheng,WANG Shu-dong,LI Hong-yu,WANG Kang-di. FEM Updating Based on Weighted Kendall Correlation Coefficient and Sequential Surrogate Model[J]. China Journal of Highway and Transport, 2021, 34(12): 57-67. DOI: 10.19721/j.cnki.1001-7372.2021.12.005
Authors:LIANG Peng  ZHAO Yun-peng  WU Gang-rou  YE Chun-sheng  WANG Shu-dong  LI Hong-yu  WANG Kang-di
Affiliation:1. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China;2. Research Center of Highway Large Structure Engineering on Safety, Ministry of Education, Chang'an University, Xi'an 710064, Shaanxi, China;3. China Highway Engineering Consultants Corporation, Beijing 100097, China;4. CRCC Chongqing Investment Group Co. Ltd., Chongqing 402760, China
Abstract:To improve the efficiency and effect of the finite-element-model updating of bridge structures, a new method based on the weighted Kendall correlation coefficient and sequential surrogate model is proposed. Firstly, a weighted Kendall correlation coefficient index based on the target response error and the sensitivity of the design parameters to be modified was established, based on which the number and location of the design parameters were reasonably determined using the hierarchical clustering algorithm, ensuring that the selected parameters have proper decoupling ability to the target response. Secondly, the sequential surrogate model method based on the FLOLA-Voronoi general sequential design strategy was adopted to solve the problem of under sampling or oversampling in the process of constructing the surrogate model, which improves the utilization of experimental samples and the efficiency of model updating. Finally, the feasibility of the proposed method was validated through the model updating of a cable-stayed bridge. The results indicate that the sequential surrogate model based on the FLOLA-Voronoi algorithm can reasonably determine the number and location of samples, and the sequential surrogate model obtains slightly more precise result than the one-time surrogate model. With introducing the weighted Kendall correlation coefficient and hierarchical clustering algorithm, more proper updating parameters with appropriate decoupling capabilities can be obtained, thereby significantly decreasing the large error target response and maintaining the small error target response in a reasonable range, based on which the overall error of the target response are effectively reduced. For the utilized bridge, the average differences of the theoretical and measured static and dynamic responses between finite element model and real bridge decrease from 5.56% and 8.43% to 2.08% and 3.26%, respectively. Compared with the traditional method, the proposed method obtains better model updating results, indicating that the proposed method can be used to update the finite element model of the bridge structure and obtain an accurate numerical model.
Keywords:bridge engineering  finite element model updating  Kendall correlation coefficient  sequential surrogate model  hierarchical clustering  
点击此处可从《中国公路学报》浏览原始摘要信息
点击此处可从《中国公路学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号