首页 | 本学科首页   官方微博 | 高级检索  
     

MRT列车运行模拟模型的多目标改进遗传算法
引用本文:石红国,彭其渊,郭寒英. MRT列车运行模拟模型的多目标改进遗传算法[J]. 西南交通大学学报, 2006, 41(5): 658-662
作者姓名:石红国  彭其渊  郭寒英
作者单位:1. 西南交通大学交通运输学院,四川,成都,610031
2. 西华大学交通与汽车工程学院,四川,成都,610039
基金项目:高等学校博士点创新基金资助项目(080203)
摘    要:为了求解城市快速交通(MRT)列车运行模拟模型,寻找最优的列车运行控制曲线,构造了多目标改进遗传算法.以列车运行过程中工况转换点为基因编码依据,以多个基因构成一个染色体代表一个控制方案,从而形成初始种群;根据列车运行控制的停站误差、时分误差和能耗等目标要求设计适应值函数;通过个体有效性检查保证选择、交叉和变异过程中新个体的有效性,并在各算子中加入保优算子,使新种群不淘汰上一代最优个体.实例计算表明,与多质点优化模型相比,在一定的误差范围内,遗传算法能够减少能耗10%以上,并能提供大量次优解,具有明显的优化效果.

关 键 词:交通运输规划 列车运行模拟 多质点优化模型 多目标改进遗传算法
文章编号:0258-2724(2006)05-0658-05
收稿时间:2006-04-26
修稿时间:2006-04-26

Improved Multi-objective GA for MRT Train Operation Simulation Model
SHI Hong-guo,PENG Qi-yuan,GUO Han-ying. Improved Multi-objective GA for MRT Train Operation Simulation Model[J]. Journal of Southwest Jiaotong University, 2006, 41(5): 658-662
Authors:SHI Hong-guo  PENG Qi-yuan  GUO Han-ying
Affiliation:1. School of Traffic and Transp. , Southwest Jiaotong University, Chengdu 610031, China; 2. School of Transportation and Automotive Engineering, Xihua University, Chengdu 610039, China
Abstract:In order to solve an MRT(mass rapid transportation) train operation simulation model and obtain the optimum operation curve,an improved multi-objective GA(genetic algorithm) was proposed.In this improved GA,gene encoding is based on train control shift position,and a chromosome composed of genes represents a train operation plan to produce the original population.The fitness function includes the objectives of train control,such as stop deviation,time deviation and energy consumption.Every individual is checked with some rule before accepted as new population in course of selection,crossover and mutation,and each algorithm contains elitist reservation in the improved GA.In addition,the proposed GA was tested through a comparison with the multi-particle model by using a case. The result shows that the improved GA can save energy above 10% and give many alternative train control schemes.
Keywords:transportation planning  train operation simulation  multi-particle model  improved multi-objective GA(genetic algorithm)
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号