首页 | 本学科首页   官方微博 | 高级检索  
     

基于AIGA-WLSSVM的埋地管道腐蚀速率预测方法
引用本文:陈翀,赵超. 基于AIGA-WLSSVM的埋地管道腐蚀速率预测方法[J]. 管道技术与设备, 2017, 0(3). DOI: 10.3969/j.issn.1004-9614.2017.03.012
作者姓名:陈翀  赵超
作者单位:福州大学石油化工学院,福建福州,350108
摘    要:
为了降低埋地管道腐蚀影响因素之间的复杂相关性,提高腐蚀预测精度,文中提出一种基于自适应免疫遗传算法-加权最小二乘支持向量机(AIGA-WLSSVM)的埋地管道腐蚀速率预测建模方法,并采用AIGA优化模型参数,进一步提高模型的学习能力和稳定性。最后通过实例分析验证了AIGA-WLSSVM建模方法在埋地管道腐蚀速率预测中的可行性和有效性,为埋地管道的检修与更换提供参考。

关 键 词:埋地管道  腐蚀速率  自适应免疫遗传算法  加权最小二乘支持向量机  预测

Prediction Model for Buried Pipeline Corrosion Rate Based on AIGA-WLSSVM
CHEN Chong,ZHAO Chao. Prediction Model for Buried Pipeline Corrosion Rate Based on AIGA-WLSSVM[J]. Pipeline Technique and Equipment, 2017, 0(3). DOI: 10.3969/j.issn.1004-9614.2017.03.012
Authors:CHEN Chong  ZHAO Chao
Abstract:
In order to reduce the complex correlation of the corrosion influence factors of buried pipeline and improve the pipeline corrosion prediction precision, the adaptive immune genetic algorithm-weighted least squares support vector machine (AIGA-WLSSVM) was used to propose the corrosion rate prediction model of buried pipeline.AIGA optimization model parameters were used, thus improving the model learning ability and stability.The feasibility and effectiveness of AIGA-WLSSVM modeling method is verified by the example analysis in buried pipeline corrosion rate, thus providing reference for buried pipeline maintenance and replacement.
Keywords:buried pipeline  corrosion rate  adaptive immune genetic algorithm (AIGA)  weighted least squares support vector machine (WLSSVM)  prediction
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号