首页 | 本学科首页   官方微博 | 高级检索  
     

粗糙集与神经网络在发动机故障诊断中的融合应用
引用本文:傅晓林,王兴家,蔡辰光. 粗糙集与神经网络在发动机故障诊断中的融合应用[J]. 重庆交通大学学报(自然科学版), 2006, 25(6): 130-134
作者姓名:傅晓林  王兴家  蔡辰光
作者单位:重庆交通大学,机电学院,重庆,400074;重庆交通大学,机电学院,重庆,400074;重庆交通大学,机电学院,重庆,400074
摘    要:电喷发动机运行的状态信息众多而复杂,故障与状态信息的关系模糊而不确定,如何从复杂的多元信息中获取有用部分并加以利用是电喷发动机故障诊断的关键.本文应用粗糙集理论对冗余信息进行约简,得到更为简明的诊断规则,将约简结果与神经网络相结合,建立了故障诊断系统.网络的训练对比结果表明,粗糙集理论的约简处理简化了神经网络结构,提高了网络的训练效率;通过实例验证了粗糙集理论与神经网络相结合进行电喷发动机故障诊断的可行性.

关 键 词:电喷发动机  粗糙集  神经网络  故障诊断
文章编号:1001-716X(2006)06-0130-05
修稿时间:2005-12-26

Blending application of rough sets and neural network in EFI engine fault diagnosis
FU Xiao-lin,WANG Xing-jia,CAI Chen-guang. Blending application of rough sets and neural network in EFI engine fault diagnosis[J]. Journal of Chongqing Jiaotong University, 2006, 25(6): 130-134
Authors:FU Xiao-lin  WANG Xing-jia  CAI Chen-guang
Abstract:The information of reflecting the EFI engine running state is complicated,the relationship between fault and numerous stating information is uncertain and fuzzy.The key of EFI engine fault diagnosis process is how to acquiring and using valuable information from those complicated multi-source information.In this paper,rough sets theory was applied to reduction of incomplete information to find necessary conditions for diagnosis,and according to the results of reduction the fault diagnosis system of based on neural networks was founded.The comparison results of network training indicated that the structure of neural network was simplified by reduction process of based on rough sets theory and efficiency of network training was enhanced;the feasibility of application of rough sets integrated with neural networks to fault diagnosis of EFI engine was verified by the practical example.
Keywords:EFI engine  rough sets  neural network  fault diagnosis
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号