首页 | 本学科首页   官方微博 | 高级检索  
     

基于兴趣相似度的社区结构发现算法研究
引用本文:韩瑞凯,孟嗣仪,刘云,郭英慧,张彦超. 基于兴趣相似度的社区结构发现算法研究[J]. 铁路计算机应用, 2010, 19(10): 10-14
作者姓名:韩瑞凯  孟嗣仪  刘云  郭英慧  张彦超
作者单位:北京交通大学,通信与信息系统北京市重点实验室,北京,100044
基金项目:国家自然科学基金,教育部培育基金,铁道部科技研究开发计划重点课题,北京市教育委员会学科建设与研究生建设项目资助,通信与信息系统北京市重点实验室资助项目,教育部哲学人文社会科学研究重大课题
摘    要:复杂网络通常会呈现出社区结构特性,如何在实际网络中高效地发现社区结构是近年来复杂网络的研究热点之一.到目前为止,已经提出很多分析复杂网络社区结构的算法.但是大部分算法基于无权网络并且有些算法由于其时间复杂度的过高导致其不适合应用于对大型网络的分析.本文提出一种基于兴趣相似度的社区结构发现算法.该算法适用于加权网络,并且降低时间复杂度.

关 键 词:复杂网络   社区结构   兴趣相似度算法
收稿时间:2010-10-15

Research on algorithm of community structure detection based on interest similarity
HAN Rui-kai,MENG Si-yi,LIU Yun,GUO Ying-hui,ZHANG Yan-chao. Research on algorithm of community structure detection based on interest similarity[J]. Railway Computer Application, 2010, 19(10): 10-14
Authors:HAN Rui-kai  MENG Si-yi  LIU Yun  GUO Ying-hui  ZHANG Yan-chao
Affiliation:(Key Laboratory of Communication & Information Systems,Beijing Municipal Commission of Education,Beijing Jiaotong University,Beijing 100044,China)
Abstract:Community structure existed in many real networks.How to find such communities effectively was one of focuses of many recent researches in the branch of complex networks.There had been many algorithms proposed so far to detect community structures in complex networks in varied topics,where most of the algorithms had some drawbacks,and some of them were not suitable for very large networks because of their time-complexity.In this paper,we presented an algorithm for detecting community structures in complex network,which was based on the Interest similarity algorithm.
Keywords:complex networks  community structure  interest similarity algorithm
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《铁路计算机应用》浏览原始摘要信息
点击此处可从《铁路计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号