首页 | 本学科首页   官方微博 | 高级检索  
     

基于阈值和蚁群算法结合的聚类方法
引用本文:杨燕,张昭涛. 基于阈值和蚁群算法结合的聚类方法[J]. 西南交通大学学报, 2006, 41(6): 719-722,742
作者姓名:杨燕  张昭涛
作者单位:西南交通大学信息科学与技术学院,四川,成都,610031
基金项目:四川省重大用应用基础研究项目(04JY029-001-4)
摘    要:为了改善聚类分析的质量,提出了一种基于阈值和蚁群算法相结合的聚类方法.按此方法,首先由基于阈值的聚类算法进行聚类,生成聚类中心,聚类个数也随之初步确定;然后将蚁群算法的转移概率引入K-平均算法,对上述聚类结果进行二次优化.实验表明,与尽平均算法等相比,该聚类方法的F-测度值(F-measure)更高.

关 键 词:聚类 蚁群算法 K-平均算法
文章编号:0258-2724(2006)06-0719-05
收稿时间:2005-08-29
修稿时间:2005-08-29

Clustering Method Combining Threshold Algorithm with Ant Colony Algorithm
YANG Yan,ZHANG Zhaotao. Clustering Method Combining Threshold Algorithm with Ant Colony Algorithm[J]. Journal of Southwest Jiaotong University, 2006, 41(6): 719-722,742
Authors:YANG Yan  ZHANG Zhaotao
Affiliation:School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610051, China
Abstract:To improve the quality of clusting analysis, a novel clustering method combining the threshold algorithm with the ant colony algorithm was proposed. With this method, the center and number of clustering are determined by using the clustering algorithm based on threshold, and then the above clustering results are optimized by the K-means algorithm combining with transition probability based on the ant colony algorithm. The experimental results show that the proposed clustering method has a higher F-measure than the K-means and other algorithms.
Keywords:clustering   ant colony algorithm    K-means
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号