首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Improving recovery-to-optimality robustness through efficiency-balanced design of timetable structure
Institution:1. Department of Management Engineering, Technical University of Denmark, Produktionstorvet, Building 426, Kgs. Lyngby 2800, Denmark;2. McKinsey & Company, Ved Stranden 14, Copenhagen 1061, Denmark
Abstract:To improve the service quality of the railway system (e.g., punctuality and travel times) and to enhance the robust timetabling methods further, this paper proposes an integrated two-stage approach to consider the recovery-to-optimality robustness into the optimized timetable design without predefined structure information (defined as flexible structure) such as initial departure times, overtaking stations, train order and buffer time. The first-stage timetabling model performs an iterative adjustment of all departure and arrival times to generate an optimal timetable with balanced efficiency and recovery-to-optimality robustness. The second-stage dispatching model evaluates the recovery-to-optimality robustness by simulating how each timetable generated from the first-stage could recover under a set of restricted scenarios of disturbances using the proposed dispatching algorithm. The concept of recovery-to-optimality is examined carefully for each timetable by selecting a set of optimally refined dispatching schedules with minimum recovery cost under each scenario of disturbance. The robustness evaluation process enables an updating of the timetable by using the generated dispatching schedules. Case studies were conducted in a railway corridor as a special case of a simple railway network to verify the effectiveness of the proposed approach. The results show that the proposed approach can effectively attain a good trade-off between the timetable efficiency and obtainable robustness for practical applications.
Keywords:Double-tracked railway network  Robust timetabling  Lagrangian heuristics  Dispatching algorithm
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号