首页 | 本学科首页   官方微博 | 高级检索  
     

多尺度稀疏电能质量扰动识别方法
作者姓名:朱云芳  吴志宇  高岩  侯怡爽  刘正杰
作者单位:西南交通大学电气工程学院
基金项目:国家重点研发计划(2017YFB1201001);国家自然科学基金(51307144)
摘    要:针对传统电能质量扰动识别中存在数据量大、扰动特征依赖主观选择的问题,提出一种多尺度稀疏电能质量扰动深度识别方法.首先,构建电能质量的多尺度稀疏模型,通过对扰动信号平稳小波多尺度变换获得扰动的低高频信息;然后,对其压缩采样获得降维的测量数据,并在此基础之上,应用正交匹配追踪算法求取各层稀疏系数组成稀疏向量,将稀疏向量输入深度置信网络,实现扰动的智能识别;同时,为进一步提高网络识别的准确性,采用交叉熵算法完成对网络隐含层数、学习率等参数寻优;最后,为验证所述方法的有效性,针对几类典型的单一扰动和复合扰动信号进行大量仿真试验.结果表明:在理想环境和噪声环境下,针对七类典型单一扰动,平均识别率达到99.0%和96.71%以上;针对13类多重扰动,平均识别到达97.69%和94.62%以上.

关 键 词:电能质量  压缩感知  扰动识别  交叉熵寻优  深度置信网络
收稿时间:2018-08-12
本文献已被 CNKI 等数据库收录!
点击此处可从《西南交通大学学报》浏览原始摘要信息
点击此处可从《西南交通大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号