首页 | 本学科首页   官方微博 | 高级检索  
     

车辆-轨道耦合动力学钢轨模型求解方法
引用本文:张健, 金学松, 肖新标, 温泽峰, 吴昌华. 车辆-轨道耦合动力学钢轨模型求解方法[J]. 交通运输工程学报, 2011, 11(2): 32-38. doi: 10.19818/j.cnki.1671-1637.2011.02.006
作者姓名:张健  金学松  肖新标  温泽峰  吴昌华
作者单位:1.大连理工大学 工业装备结构分析国家重点实验室,辽宁 大连 116024;;2.西南交通大学 牵引动力国家重点实验室,四川 成都 610031
基金项目:国家973计划项目(2007CB714702); 国家自然科学基金项目(50821063,50875221)
摘    要:应用车辆-轨道非线性耦合动力学模型, 分析了采用解析方法的模态叠加法、有限元法的模态叠加法和有限元法的直接积分法求解车辆-轨道耦合动力学钢轨模型的计算精度与计算效率。选取Bernoulli-Euler梁或Rayleigh-Timoshenko梁模拟钢轨, 采用不同类型单元离散钢轨模型, 并利用显式积分方法求解车辆-轨道耦合动力学的响应。计算结果表明: 当采用Bernoulli-Euler梁钢轨模型和轨道激励频率较低时, 采用协调质量阵的直接积分法计算时间是解析方法的模态叠加法的28.8倍, 各种计算方法的计算结果接近; 当采用Rayleigh-Timoshenko梁钢轨模型和轨道激励频率较低时, 可以忽略Rayleigh-Timoshenko梁的转动惯量对车辆-轨道耦合动力学模型的响应影响; 解析法的模态叠加法的计算时间比混合单元的慢64.5%。

关 键 词:钢轨模型   有限元法   模态叠加法   Bernoulli-Euler梁   Rayleigh-Timoshenko梁
收稿时间:2010-11-11

Solution methods of rail model in vehicle-track coupling dynamics
ZHANG Jian, JIN Xue-song, XIAO Xin-biao, WEN Ze-feng, WU Chang-hua. Solution methods of rail model in vehicle-track coupling dynamics[J]. Journal of Traffic and Transportation Engineering, 2011, 11(2): 32-38. doi: 10.19818/j.cnki.1671-1637.2011.02.006
Authors:ZHANG Jian  JIN Xue-song  XIAO Xin-biao  WEN Ze-feng  WU Chang-hua
Affiliation:1. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University ofTechnology, Dalian 116024, Liaoning, China;;2. Traction Power State Key Laboratory, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
Abstract:The computational accuracies and efficiencies of different methods for solving dynamic rail model were investigated with vehicle-track nonlinear coupling dynamics model.The methods were modal superposition method based on analytical expression,modal superposition method based on FEM,and direct integration method based on FEM.Rail was modeled by Bernoulli-Euler beam or Rayleigh-Timoshenko beam,and rail model was divided by different types of elements.The response of vehicle-track coupling dynamics was solved...
Keywords:rail model  finite element method  modal superposition method  Bernoulli-Euler beam  Rayleigh-Timoshenko beam  
本文献已被 CNKI 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号