基于TF-IDF加权朴素贝叶斯算法的ATP车载设备测试案例分类研究 |
| |
引用本文: | 王心仪,程剑锋,刘育君. 基于TF-IDF加权朴素贝叶斯算法的ATP车载设备测试案例分类研究[J]. 铁路计算机应用, 2022, 31(12): 8-12. DOI: 10.3969/j.issn.1005-8451.2022.12.02 |
| |
作者姓名: | 王心仪 程剑锋 刘育君 |
| |
作者单位: | 1.中国铁道科学研究院 研究生部,北京 100081 |
| |
基金项目: | 中国铁道科学研究院集团有限公司科研项目(2021YJ085);北京华铁信息技术有限公司科研项目(2019HT22) |
| |
摘 要: | 针对列车超速防护(ATP,Automatic Train Protection)系统车载设备测试案例分类存在的工作量大、效率低且准确性不高等问题,提出了将词频—逆文档频率(TF-IDF,Term Frequency-Inverse Document Frequency)与朴素贝叶斯算法相结合,应用于测试案例分类的方案。利用TF-IDF算法筛选特征词及权重,对朴素贝叶斯算法进行加权处理,并基于实验室现有ATP车载设备的测试案例进行验证。实验结果表明,文章的特征词提取及测试案例分类方法具有较高的准确性。
|
关 键 词: | 列车超速防护(ATP) 测试案例 TF-IDF 朴素贝叶斯 案例分类 |
收稿时间: | 2022-07-06 |
Classification of ATP on-board equipment test cases based on TF-IDF weighted Naive Bayesian algorithm |
| |
Affiliation: | 1.Postgraduate Department, China Academy of Railway Sciences, Beijing 100081, China2.Signal & Communication Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China |
| |
Abstract: | Aiming at the problems of heavy workload, low efficiency and low accuracy in the classification of test cases of on-board equipment of ATP (Automatic Train Protection) system, this paper proposed a scheme that combined TF-IDF (Term Frequency Inverse Document Frequency) with Naive Bayesian algorithm to classify test cases. The paper used TF-IDF algorithm to filter feature words and weights, and weighted Naive Bayesian algorithm, which was verified based on the test cases of existing ATP on-board equipment in the laboratory. The experiment results show that the method of feature word extraction and test case classification has high accuracy. |
| |
Keywords: | |
|
| 点击此处可从《铁路计算机应用》浏览原始摘要信息 |
|
点击此处可从《铁路计算机应用》下载全文 |