首页 | 本学科首页   官方微博 | 高级检索  
     

基于TF-IDF加权朴素贝叶斯算法的ATP车载设备测试案例分类研究
引用本文:王心仪,程剑锋,刘育君. 基于TF-IDF加权朴素贝叶斯算法的ATP车载设备测试案例分类研究[J]. 铁路计算机应用, 2022, 31(12): 8-12. DOI: 10.3969/j.issn.1005-8451.2022.12.02
作者姓名:王心仪  程剑锋  刘育君
作者单位:1.中国铁道科学研究院 研究生部,北京 100081
基金项目:中国铁道科学研究院集团有限公司科研项目(2021YJ085);北京华铁信息技术有限公司科研项目(2019HT22)
摘    要:
针对列车超速防护(ATP,Automatic Train Protection)系统车载设备测试案例分类存在的工作量大、效率低且准确性不高等问题,提出了将词频—逆文档频率(TF-IDF,Term Frequency-Inverse Document Frequency)与朴素贝叶斯算法相结合,应用于测试案例分类的方案。利用TF-IDF算法筛选特征词及权重,对朴素贝叶斯算法进行加权处理,并基于实验室现有ATP车载设备的测试案例进行验证。实验结果表明,文章的特征词提取及测试案例分类方法具有较高的准确性。

关 键 词:列车超速防护(ATP)  测试案例  TF-IDF  朴素贝叶斯  案例分类
收稿时间:2022-07-06

Classification of ATP on-board equipment test cases based on TF-IDF weighted Naive Bayesian algorithm
Affiliation:1.Postgraduate Department, China Academy of Railway Sciences, Beijing 100081, China2.Signal & Communication Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China
Abstract:
Aiming at the problems of heavy workload, low efficiency and low accuracy in the classification of test cases of on-board equipment of ATP (Automatic Train Protection) system, this paper proposed a scheme that combined TF-IDF (Term Frequency Inverse Document Frequency) with Naive Bayesian algorithm to classify test cases. The paper used TF-IDF algorithm to filter feature words and weights, and weighted Naive Bayesian algorithm, which was verified based on the test cases of existing ATP on-board equipment in the laboratory. The experiment results show that the method of feature word extraction and test case classification has high accuracy.
Keywords:
点击此处可从《铁路计算机应用》浏览原始摘要信息
点击此处可从《铁路计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号