首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊补偿的RBF神经网络机械手控制
作者姓名:毛润  高宏力  宋兴国
作者单位:西南交通大学机械工程学院
摘    要:针对机械手系统的高精度轨迹跟踪控制,提出了一种基于模糊补偿的RBF(radial basis function)神经网络机械手控制方法.该方法首先利用PD(proportional-integral)控制器获得机械手的控制策略,将其输出作为RBF神经网络的输入,并学习得到系统模型;然后运用模糊逻辑补偿器对系统扰动和建模误差进行补偿;最后,在MATLAB/Simulink平台上针对两关节机械臂,进行了有模糊补偿和无模糊补偿系统跟踪的均方根误差测量仿真实验.研究结果表明,两关节机械臂的控制精度分别提高了60.8%和71.4%,本文提出的方法能够解决机械手实际模型很难精确建立的问题,并能对系统未建模部分和扰动部分进行自适应补偿. 

关 键 词:机械手   PD控制   RBF神经网络   模糊逻辑
收稿时间:2016-03-23
本文献已被 CNKI 等数据库收录!
点击此处可从《西南交通大学学报》浏览原始摘要信息
点击此处可从《西南交通大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号