首页 | 本学科首页   官方微博 | 高级检索  
     

基于EEMD-TEO熵的高速列车轴承故障诊断方法
作者姓名:靳行  林建辉  伍川辉  邓韬  黄晨光
作者单位:西南交通大学牵引动力国家重点实验室
基金项目:四川省科技支撑计划资助项目2016JY0047
摘    要:为了解决高速列车轴承早期故障中低频信号的类间分离性较弱、保持架故障难以识别等的问题,提出了基于Teager能量算子(Teager energy operator,TEO)聚合经验模态分解(ensemble empirical mode decomposition,EEMD)熵的自适应诊断方法.该方法将EEMD、样本熵、TEO相结合,利用EEMD的自适应性得到固有模态(intrinic mode function,IMF)信号,用改进的TEO从IMF中提取得到样本熵,使用支持向量机(support vector machine,SVM)判断轴承工作状态与故障类型;讨论了EEMD能量熵、EEMD奇异值熵、EEMD-TEO时频熵生成的故障特征向量以及该向量在SVM中识别结果;对正常轴承、保持架故障、滚动体故障3种状态的轴承样本数据进行了故障诊断.研究结果表明:对3种轴承的故障识别率可以达到98%,较传统的经验模态熵识别率提高了2.6%,该方法可用作高速列车轴承状态诊断. 

关 键 词:经验模态分解   奇异值分解   Teager能量算子   瞬时频率   轴承故障
收稿时间:2016-04-07
本文献已被 CNKI 等数据库收录!
点击此处可从《西南交通大学学报》浏览原始摘要信息
点击此处可从《西南交通大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号