首页 | 本学科首页   官方微博 | 高级检索  
     

基于约束卡尔曼滤波的短时交通流量组合预测模型
引用本文:聂佩林, 余志, 何兆成. 基于约束卡尔曼滤波的短时交通流量组合预测模型[J]. 交通运输工程学报, 2008, 8(5): 86-90.
作者姓名:聂佩林  余志  何兆成
作者单位:中山大学 智能交通中心, 广东 广州 510275
摘    要:
为了克服单一的交通流预测模型性能不稳定的问题, 提出了基于约束卡尔曼滤波的短时交通流量组合预测模型。约束卡尔曼滤波组合预测模型以各单一预测模型的权重为状态变量, 交通流量为观测变量, 预测结果是单一预测模型的加权和, 加权系数由约束卡尔曼滤波方程递推动态确定, 最后通过广深高速公路上采集的交通流量数据对算法进行了验证。结果表明, 在不同预测步长情况下, 约束卡尔曼滤波组合预测模型要优于最佳的单一预测模型或与其持平, 并且不受某一较差的预测模型影响, 具有较高的鲁棒性。

关 键 词:交通流预测   约束卡尔曼滤波   神经网络   自回归滑动平均模型
收稿时间:2008-03-12

Constrained Kalman filter combined predictor for short-term traffic flow
NIE Pei-lin, YU Zhi, HE Zhao-cheng. Constrained Kalman filter combined predictor for short-term traffic flow[J]. Journal of Traffic and Transportation Engineering, 2008, 8(5): 86-90.
Authors:NIE Pei-lin  YU Zhi  HE Zhao-cheng
Affiliation:ITS Research Centre, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
Abstract:
In order to avoid the unstableness of single traffic flow prediction model,a constrained Kalman filter combined(CKFC) predictor was proposed for short-term traffic flow,the weight of each single predictor was used as state variable for the predictor,traffic flow was used as measurement variable,CKFC predictor's result was a weighted sum of single predictor,the weights were decided by constrained Kalman filter dynamically,and CKFC predictor was tested using traffic flow data collected on Guangshen freeway.Analysis result indicates that CKFC predictor is better than or at least as good as the optimum single predictor,it is not influenced by poor predictor and has high robustness.2 tabs,3 figs,10 refs.
Keywords:traffic flow prediction  constrained Kalman filter  neural network  autoregressive moving average model
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号