首页 | 本学科首页   官方微博 | 高级检索  
     

测试系统中波形的神经网络识别方法
引用本文:曾翔,姜本清,徐涛. 测试系统中波形的神经网络识别方法[J]. 舰船电子工程, 2014, 0(3): 141-145
作者姓名:曾翔  姜本清  徐涛
作者单位:海军航空工程学院研究生管理大队;海军航空工程学院电子信息工程系;
摘    要:
为满足自动测试系统对信号波形的智能化识别要求,在对现有的波形识别方法进行研究的基础上,提出一种新的波形识别方法;该方法在利用离散余弦变换(DCT)对波形进行频域特征提取的基础上,将模式识别与BP神经网络理论相结合从而建立波形特征匹配模板,最终实现对信号波形的智能识别;对比试验表明,该方法与最大相关系数法(MCC)、最大相关差值法(MCD)相比很好地解决了待测波形与模板波形匹配过程中的相位对齐过程,而且更加快速、高效。

关 键 词:波形识别  模式识别  神经网络

Waveform Recognition by Neural Network in Test System
ZENG Xiang,JIANG Benqing,XU Tao. Waveform Recognition by Neural Network in Test System[J]. Ship Electronic Engineering, 2014, 0(3): 141-145
Authors:ZENG Xiang  JIANG Benqing  XU Tao
Affiliation:1. Graduate Students' Brigade, Naval Aeronautical and Astronautical University, Yantai 264001) (2. Department of Electronic Information Engineering, Navy Aeronautical and Astronautical University, Yantai 264001)
Abstract:
To satisfy the intelligence requirements of recognizing signal waveform in test system,a new waveform recognition solution is presented on the basis of analyzing existing waveform recognition methods.This solution constructs waveform matching template which combines the pattern recognition and BP neural network after extracting waveform features through DCT and recognizes signal waceform intelligently in the end.The experiments show that this new solution can deal with the phase alignment problem and is more fast and effective than some current methods.
Keywords:waveform recognition  pattern recognition  neural network
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号